Understanding metabolic alterations in advanced stage chronic kidney disease patients by NMR-based metabolomics†

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular omics Pub Date : 2025-06-16 DOI:10.1039/D5MO00019J
Amrita Sahu, Upasna Gupta, Bikash Baishya, Dharmendra Singh Bhadauria and Neeraj Sinha
{"title":"Understanding metabolic alterations in advanced stage chronic kidney disease patients by NMR-based metabolomics†","authors":"Amrita Sahu, Upasna Gupta, Bikash Baishya, Dharmendra Singh Bhadauria and Neeraj Sinha","doi":"10.1039/D5MO00019J","DOIUrl":null,"url":null,"abstract":"<p >Understanding metabolic alterations in CKD is crucial, as serum creatinine-based diagnosis lacks precision, affecting key clinical decisions. In this study, a <small><sup>1</sup></small>H NMR-based metabolomics approach was employed to distinguish between advanced-stage CKD (ASCKD) patients and healthy controls (HC), as well as within the ASCKD stages (stage 4 and stage 5). Serum samples from 52 ASCKD (S4, S5) and 25 HC were analyzed. Multivariate and univariate analysis revealed distinct metabolic patterns across groups, providing insights into CKD pathophysiology and associated pathway alterations. Compared to HC, six metabolites were significantly altered in both stage 4 and 5 CKD patients with upregulated creatinine, urea, myoinositol, choline, <em>N</em>,<em>N</em>-dimethylglycine, and downregulated tyrosine, showing potential as biomarkers with AUC above 0.8 in ROC analysis. Additionally, myo-inositol, dimethylamine, <em>N</em>,<em>N</em>-dimethylglycine, and choline correlate positively with creatinine while tyrosine correlates negatively. Amino acid metabolism was downregulated in S5 indicating more severity. Within ASCKD patients, significant alterations were observed in metabolites such as glutamate, glutamine, alanine, threonine, myo-inositol, dimethylamine, citrulline, urea, citrate, and betaine. Pathway analysis identified five distinct metabolic pathways associated with CKD progression. Consequently, we propose a panel of serum metabolites which should be monitored along with creatinine for following CKD progression. Markers of oxidative stress, inflammation, and gut dysbiosis were evident in the perturbed metabolic profile due to the systemic impact of CKD.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 5","pages":" 464-478"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mo/d5mo00019j","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding metabolic alterations in CKD is crucial, as serum creatinine-based diagnosis lacks precision, affecting key clinical decisions. In this study, a 1H NMR-based metabolomics approach was employed to distinguish between advanced-stage CKD (ASCKD) patients and healthy controls (HC), as well as within the ASCKD stages (stage 4 and stage 5). Serum samples from 52 ASCKD (S4, S5) and 25 HC were analyzed. Multivariate and univariate analysis revealed distinct metabolic patterns across groups, providing insights into CKD pathophysiology and associated pathway alterations. Compared to HC, six metabolites were significantly altered in both stage 4 and 5 CKD patients with upregulated creatinine, urea, myoinositol, choline, N,N-dimethylglycine, and downregulated tyrosine, showing potential as biomarkers with AUC above 0.8 in ROC analysis. Additionally, myo-inositol, dimethylamine, N,N-dimethylglycine, and choline correlate positively with creatinine while tyrosine correlates negatively. Amino acid metabolism was downregulated in S5 indicating more severity. Within ASCKD patients, significant alterations were observed in metabolites such as glutamate, glutamine, alanine, threonine, myo-inositol, dimethylamine, citrulline, urea, citrate, and betaine. Pathway analysis identified five distinct metabolic pathways associated with CKD progression. Consequently, we propose a panel of serum metabolites which should be monitored along with creatinine for following CKD progression. Markers of oxidative stress, inflammation, and gut dysbiosis were evident in the perturbed metabolic profile due to the systemic impact of CKD.

Abstract Image

通过核磁共振代谢组学了解晚期慢性肾病患者的代谢改变。
了解CKD的代谢改变是至关重要的,因为基于血清肌酐的诊断缺乏准确性,影响关键的临床决策。在这项研究中,采用基于1H nmr的代谢组学方法来区分晚期CKD (ASCKD)患者和健康对照(HC),以及ASCKD分期(4期和5期)。分析52例ASCKD (S4, S5)和25例HC的血清样本。多变量和单变量分析揭示了各组之间不同的代谢模式,为CKD病理生理和相关途径改变提供了见解。与HC相比,4期和5期CKD患者的6种代谢物显著改变,肌酐、尿素、肌醇、胆碱、N、N-二甲基甘氨酸和酪氨酸下调,在ROC分析中显示出AUC高于0.8的潜在生物标志物。此外,肌醇、二甲胺、N、N-二甲基甘氨酸和胆碱与肌酐呈正相关,而酪氨酸呈负相关。氨基酸代谢在S5中下调,表明更严重。在ASCKD患者中,代谢物如谷氨酸、谷氨酰胺、丙氨酸、苏氨酸、肌醇、二甲胺、瓜氨酸、尿素、柠檬酸盐和甜菜碱发生了显著变化。途径分析确定了与CKD进展相关的五种不同的代谢途径。因此,我们建议一组血清代谢物与肌酐一起监测CKD进展。由于慢性肾病的全身影响,氧化应激、炎症和肠道生态失调的标志物在代谢紊乱中很明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular omics
Molecular omics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍: Molecular Omics publishes high-quality research from across the -omics sciences. Topics include, but are not limited to: -omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance -omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets -omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques -studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field. Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits. Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信