Gabriela Sena, Thaina Alvarenga, Ruan Ingliton Feio, Cícero Brasileiro Mello, Gabriel Fidalgo, Katrine Paiva, Tayane Tanure, Liebert Parreiras Nogueira, Marcos Vinícius Colaço, Arissa Pickler, Marcelo Salabert Gonzalez, Patricia Azambuja, Giuliana tromba, José Bento Pereira Lima, Ademir Xavier da Silva, Regina Cély Barroso
{"title":"Virtual dissection of Aedes aegypti mosquito using phase-contrast synchrotron microtomography","authors":"Gabriela Sena, Thaina Alvarenga, Ruan Ingliton Feio, Cícero Brasileiro Mello, Gabriel Fidalgo, Katrine Paiva, Tayane Tanure, Liebert Parreiras Nogueira, Marcos Vinícius Colaço, Arissa Pickler, Marcelo Salabert Gonzalez, Patricia Azambuja, Giuliana tromba, José Bento Pereira Lima, Ademir Xavier da Silva, Regina Cély Barroso","doi":"10.1111/jmi.70004","DOIUrl":null,"url":null,"abstract":"<p>In this paper, in-line phase-contrast synchrotron microtomography was used to study the morphology of adult <i>Aedes aegypti</i>. These specimens are vectors of several arboviruses, causing dengue, chikungunya, Zika and yellow fever. The morphological details of this insect species are still incomplete and insufficient. To address this gap, this study examined whole specimens of <i>Aedes aegypti</i> in the adult phase at high resolution. For this, the adult samples were scanned in the microtomography beamline (SYRMEP) at the Italian Synchrotron Light Laboratory (ELETTRA). The phase-contrast technique allowed us to obtain high-quality images, which made it possible to evaluate the segmentation of structures on the rendered volume by the Dragonfly software. The combination of high-quality images and segmentation process provide adequate visualisation of different organs which could serve in assessing the effectiveness of innovative control population methods as a basis for future control studies of the insect vector.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 1","pages":"68-76"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.70004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, in-line phase-contrast synchrotron microtomography was used to study the morphology of adult Aedes aegypti. These specimens are vectors of several arboviruses, causing dengue, chikungunya, Zika and yellow fever. The morphological details of this insect species are still incomplete and insufficient. To address this gap, this study examined whole specimens of Aedes aegypti in the adult phase at high resolution. For this, the adult samples were scanned in the microtomography beamline (SYRMEP) at the Italian Synchrotron Light Laboratory (ELETTRA). The phase-contrast technique allowed us to obtain high-quality images, which made it possible to evaluate the segmentation of structures on the rendered volume by the Dragonfly software. The combination of high-quality images and segmentation process provide adequate visualisation of different organs which could serve in assessing the effectiveness of innovative control population methods as a basis for future control studies of the insect vector.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.