Machine learning-based prediction of amyloid positivity using early-phase F-18 flutemetamol PET.

IF 3.1 3区 医学 Q2 NEUROSCIENCES
Yong-Jin Park, Sang Won Seo, Seong Hye Choi, So Young Moon, Sang Joon Son, Chang Hyung Hong, Young-Sil An
{"title":"Machine learning-based prediction of amyloid positivity using early-phase F-18 flutemetamol PET.","authors":"Yong-Jin Park, Sang Won Seo, Seong Hye Choi, So Young Moon, Sang Joon Son, Chang Hyung Hong, Young-Sil An","doi":"10.1177/13872877251351275","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundPrevious studies have suggested that early-phase imaging of amyloid positron emission tomography (PET) may offer information for predicting amyloid positivity.ObjectiveThis study aimed to evaluate whether early-phase fluorine-18 flutemetamol (eFMM) PET images provide valuable information for predicting amyloid positivity using machine learning (ML) models and whether incorporating clinical and neuropsychological features improves predictive performance.MethodsIn total, 454 patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) were enrolled and randomly divided into training (n = 354) and test (n = 100) groups. We developed ML models using logistic regression (LR) and linear discriminant analyses (LDA) for predicting amyloid positivity: eFMM features alone (eFMM model), eFMM features combined with clinical features (eFMM + C model), eFMM features combined with neuropsychological features (eFMM + N model), eFMM features combined with both clinical and neuropsychological features (eFMM + C + N model), clinical and neuropsychological features combined (C + N model), and dFMM features alone (dFMM model).ResultsIn the test group, the eFMM models achieved areas under the receiver operating characteristic curves (AUROCs) of 0.791 (LR) and 0.779 (LDA). The eFMM + C + N models significantly improved predictive performance, with AUROCs of 0.902 for both LR and LDA, outperforming the eFMM models.ConclusionsML predictive models using eFMM PET data demonstrated fair performance in predicting amyloid positivity in patients with MCI and AD. The addition of relevant clinical and neuropsychological features further enhanced the predictive performance of the eFMM models, achieving excellent performance.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877251351275"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877251351275","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundPrevious studies have suggested that early-phase imaging of amyloid positron emission tomography (PET) may offer information for predicting amyloid positivity.ObjectiveThis study aimed to evaluate whether early-phase fluorine-18 flutemetamol (eFMM) PET images provide valuable information for predicting amyloid positivity using machine learning (ML) models and whether incorporating clinical and neuropsychological features improves predictive performance.MethodsIn total, 454 patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) were enrolled and randomly divided into training (n = 354) and test (n = 100) groups. We developed ML models using logistic regression (LR) and linear discriminant analyses (LDA) for predicting amyloid positivity: eFMM features alone (eFMM model), eFMM features combined with clinical features (eFMM + C model), eFMM features combined with neuropsychological features (eFMM + N model), eFMM features combined with both clinical and neuropsychological features (eFMM + C + N model), clinical and neuropsychological features combined (C + N model), and dFMM features alone (dFMM model).ResultsIn the test group, the eFMM models achieved areas under the receiver operating characteristic curves (AUROCs) of 0.791 (LR) and 0.779 (LDA). The eFMM + C + N models significantly improved predictive performance, with AUROCs of 0.902 for both LR and LDA, outperforming the eFMM models.ConclusionsML predictive models using eFMM PET data demonstrated fair performance in predicting amyloid positivity in patients with MCI and AD. The addition of relevant clinical and neuropsychological features further enhanced the predictive performance of the eFMM models, achieving excellent performance.

使用早期F-18氟替他莫PET预测淀粉样蛋白阳性的机器学习。
先前的研究表明,淀粉样蛋白正电子发射断层扫描(PET)的早期成像可能为预测淀粉样蛋白阳性提供信息。目的本研究旨在评估早期氟-18氟替他莫(eFMM) PET图像是否为使用机器学习(ML)模型预测淀粉样蛋白阳性提供有价值的信息,以及结合临床和神经心理学特征是否能提高预测性能。方法共纳入454例轻度认知障碍(MCI)和阿尔茨海默病(AD)患者,随机分为训练组(n = 354)和测试组(n = 100)。我们使用逻辑回归(LR)和线性判别分析(LDA)开发了预测淀粉样蛋白阳性的ML模型:eFMM特征单独(eFMM模型)、eFMM特征结合临床特征(eFMM + C模型)、eFMM特征结合神经心理特征(eFMM + N模型)、eFMM特征结合临床和神经心理特征(eFMM + C + N模型)、临床和神经心理特征联合(C + N模型)和dFMM特征单独(dFMM模型)。结果试验组eFMM模型的受试者工作特征曲线下面积(auroc)分别为0.791 (LR)和0.779 (LDA)。eFMM + C + N模型显著提高了预测性能,LR和LDA的auroc均为0.902,优于eFMM模型。结论使用eFMM PET数据的sml预测模型在预测MCI和AD患者的淀粉样蛋白阳性方面表现良好。相关临床和神经心理学特征的加入进一步增强了eFMM模型的预测性能,取得了优异的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alzheimer's Disease
Journal of Alzheimer's Disease 医学-神经科学
CiteScore
6.40
自引率
7.50%
发文量
1327
审稿时长
2 months
期刊介绍: The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信