Yuhan Huang, Dan Yan, Weijie Ouyang, Jiaoyue Hu, Zuguo Liu
{"title":"Recent Achievements and Perspectives in Smart Nano-in-Micro Platforms for Ocular Disease Treatment.","authors":"Yuhan Huang, Dan Yan, Weijie Ouyang, Jiaoyue Hu, Zuguo Liu","doi":"10.2147/IJN.S518643","DOIUrl":null,"url":null,"abstract":"<p><p>Ocular diseases present unique therapeutic challenges due to the complex anatomical and physiological barriers of the eye. Conventional drug delivery systems often suffer from poor bioavailability, rapid clearance, and inadequate targeting, limiting their clinical efficacy. Recent advances in smart nano-in-micro (NIM) platforms have emerged as a transformative strategy, combining the precision of nanoscale drug carriers with the stability and sustained-release capabilities of microscale matrices. These hierarchical systems enable enhanced drug penetration, prolonged retention, and targeted delivery to both anterior and posterior ocular segments. This review highlights the latest developments in NIM platforms, focusing on material innovations that optimize drug loading, release kinetics, and biocompatibility. The shared physicochemical properties of nano-micro particles that influence their performance across different administration routes (topical, intravitreal, subconjunctival), supported by mechanistic insights into their interactions with ocular tissues are discussed. By bridging nanoscale engineering with clinical ophthalmology, NIM platforms represent a paradigm shift in ocular therapeutics, offering the potential to revolutionize treatment for previously intractable eye diseases.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"7579-7612"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12182069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S518643","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocular diseases present unique therapeutic challenges due to the complex anatomical and physiological barriers of the eye. Conventional drug delivery systems often suffer from poor bioavailability, rapid clearance, and inadequate targeting, limiting their clinical efficacy. Recent advances in smart nano-in-micro (NIM) platforms have emerged as a transformative strategy, combining the precision of nanoscale drug carriers with the stability and sustained-release capabilities of microscale matrices. These hierarchical systems enable enhanced drug penetration, prolonged retention, and targeted delivery to both anterior and posterior ocular segments. This review highlights the latest developments in NIM platforms, focusing on material innovations that optimize drug loading, release kinetics, and biocompatibility. The shared physicochemical properties of nano-micro particles that influence their performance across different administration routes (topical, intravitreal, subconjunctival), supported by mechanistic insights into their interactions with ocular tissues are discussed. By bridging nanoscale engineering with clinical ophthalmology, NIM platforms represent a paradigm shift in ocular therapeutics, offering the potential to revolutionize treatment for previously intractable eye diseases.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.