Parkinson's disease: exploring the systemic immune mechanisms through molecular investigations.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Maneesh Mohan, Ashi Mannan, Thakur Gurjeet Singh
{"title":"Parkinson's disease: exploring the systemic immune mechanisms through molecular investigations.","authors":"Maneesh Mohan, Ashi Mannan, Thakur Gurjeet Singh","doi":"10.1007/s10787-025-01816-9","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder that is mainly caused by the degeneration of dopaminergic neurons of the substantia nigra. Although the pathological feature involves α-synuclein aggregation, recent findings suggest that systemic immune dysregulation is a key process in initiating and advancing the disease. This article seeks to untangle the complex molecular mechanisms that contribute to the immune response in PD, with specific emphasis on innate and adaptive immune processes. α-Synuclein-induced T-cell-mediated neuronal degeneration reveals a causal relationship between peripheral immunity and central neurodegeneration. At the same time, stimulation of innate immune sensors like the NLRP3 inflammasome in microglia has been found to accelerate neuroinflammation and lead to neuronal loss. Mitochondrial dysfunction, another key hallmark of PD, leads to defective mitophagy and release of mitochondrial danger-associated molecular patterns (DAMPs), further exaggerating inflammatory signals through NLRP3 and other mechanisms. Moreover, defective autophagic and lysosomal degradation machinery may perpetuate chronic inflammation and immune cell activation. Gut microbiota-gut-associated lymphoid tissue-peripheral immune cell interaction with the blood-brain barrier also comes into play as a key player in PD neuroimmune cross-talk. We specifically address therapeutic implications, focusing on the promise of immune checkpoint targeting, inhibition of inflammasomes, and mitophagy improvement as new disease-modifying approaches. Elucidation of these complex immune mechanisms offers key insights into PD pathophysiology and opens promising immunomodulatory therapeutic paths. This review integrates cutting-edge discoveries and outlines a shared model to improve understanding of the systemic immune setting in Parkinson's disease.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01816-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that is mainly caused by the degeneration of dopaminergic neurons of the substantia nigra. Although the pathological feature involves α-synuclein aggregation, recent findings suggest that systemic immune dysregulation is a key process in initiating and advancing the disease. This article seeks to untangle the complex molecular mechanisms that contribute to the immune response in PD, with specific emphasis on innate and adaptive immune processes. α-Synuclein-induced T-cell-mediated neuronal degeneration reveals a causal relationship between peripheral immunity and central neurodegeneration. At the same time, stimulation of innate immune sensors like the NLRP3 inflammasome in microglia has been found to accelerate neuroinflammation and lead to neuronal loss. Mitochondrial dysfunction, another key hallmark of PD, leads to defective mitophagy and release of mitochondrial danger-associated molecular patterns (DAMPs), further exaggerating inflammatory signals through NLRP3 and other mechanisms. Moreover, defective autophagic and lysosomal degradation machinery may perpetuate chronic inflammation and immune cell activation. Gut microbiota-gut-associated lymphoid tissue-peripheral immune cell interaction with the blood-brain barrier also comes into play as a key player in PD neuroimmune cross-talk. We specifically address therapeutic implications, focusing on the promise of immune checkpoint targeting, inhibition of inflammasomes, and mitophagy improvement as new disease-modifying approaches. Elucidation of these complex immune mechanisms offers key insights into PD pathophysiology and opens promising immunomodulatory therapeutic paths. This review integrates cutting-edge discoveries and outlines a shared model to improve understanding of the systemic immune setting in Parkinson's disease.

帕金森病:通过分子研究探索全身免疫机制。
帕金森病(PD)是一种主要由黑质多巴胺能神经元变性引起的神经退行性疾病。尽管病理特征涉及α-突触核蛋白聚集,但最近的研究表明,系统性免疫失调是引发和发展疾病的关键过程。本文旨在解开PD中免疫反应的复杂分子机制,特别强调先天和适应性免疫过程。α-突触核蛋白诱导的t细胞介导的神经元变性揭示了外周免疫与中枢神经变性之间的因果关系。同时,研究发现刺激小胶质细胞中的NLRP3炎性体等先天免疫传感器会加速神经炎症并导致神经元丢失。线粒体功能障碍是帕金森病的另一个重要标志,它导致线粒体自噬缺陷和线粒体危险相关分子模式(Mitochondrial danger-associated molecular patterns, DAMPs)的释放,通过NLRP3等机制进一步夸大炎症信号。此外,有缺陷的自噬和溶酶体降解机制可能使慢性炎症和免疫细胞激活永久化。肠道微生物-肠道相关淋巴组织-外周免疫细胞与血脑屏障的相互作用也在PD神经免疫串音中起关键作用。我们特别讨论了治疗意义,重点关注免疫检查点靶向、炎症小体抑制和线粒体自噬改善作为新的疾病改善方法的前景。阐明这些复杂的免疫机制为帕金森病的病理生理学提供了关键的见解,并开辟了有前途的免疫调节治疗途径。这篇综述整合了最新的发现,并概述了一个共享的模型,以提高对帕金森病全身免疫环境的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信