A scalable neural network emulator with MRAM-based mixed-signal circuits.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-06-09 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1599144
Jua Lee, Jiho Song, Hyeon Seong Im, Jonghwi Kim, Woonjae Lee, Wooseok Yi, Soonwan Kwon, Byungsu Jung, Joohyoung Kim, Yoonmyung Lee, Jung-Hoon Chun
{"title":"A scalable neural network emulator with MRAM-based mixed-signal circuits.","authors":"Jua Lee, Jiho Song, Hyeon Seong Im, Jonghwi Kim, Woonjae Lee, Wooseok Yi, Soonwan Kwon, Byungsu Jung, Joohyoung Kim, Yoonmyung Lee, Jung-Hoon Chun","doi":"10.3389/fnins.2025.1599144","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present a mixed-signal framework that utilizes MRAM (Magneto-resistive Random Access Memory) technology to emulate behaviors observed in biological neural networks on silicon substrates. While modern technology increasingly draws inspiration from biological neural networks, fully understanding these complex systems remains a significant challenge. Our framework integrates multi-bit MRAM synapse arrays and analog circuits to replicate essential neural functions, including Leaky Integrate and Fire (LIF) dynamics, Excitatory and Inhibitory Postsynaptic Potentials (EPSP and IPSP), the refractory period, and the lateral inhibition. A key challenge in using MRAM for neuromorphic systems is its low on/off resistance ratio, which limits the accuracy of current-mode analog computation. To overcome this, we introduce a current subtraction architecture that reliably generates multi-level synaptic currents based on MRAM states. This enables robust analog neural processing while preserving MRAM's advantages, such as non-volatility and CMOS compatibility. The chip's adjustable operating frequency allows it to replicate biologically realistic time scales as well as accelerate experimental processes. Experimental results from fabricated chips confirm the successful emulation of biologically inspired neural dynamics, demonstrating the feasibility of MRAM-based analog neuromorphic computation for real-time and scalable neural emulation.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1599144"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1599144","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a mixed-signal framework that utilizes MRAM (Magneto-resistive Random Access Memory) technology to emulate behaviors observed in biological neural networks on silicon substrates. While modern technology increasingly draws inspiration from biological neural networks, fully understanding these complex systems remains a significant challenge. Our framework integrates multi-bit MRAM synapse arrays and analog circuits to replicate essential neural functions, including Leaky Integrate and Fire (LIF) dynamics, Excitatory and Inhibitory Postsynaptic Potentials (EPSP and IPSP), the refractory period, and the lateral inhibition. A key challenge in using MRAM for neuromorphic systems is its low on/off resistance ratio, which limits the accuracy of current-mode analog computation. To overcome this, we introduce a current subtraction architecture that reliably generates multi-level synaptic currents based on MRAM states. This enables robust analog neural processing while preserving MRAM's advantages, such as non-volatility and CMOS compatibility. The chip's adjustable operating frequency allows it to replicate biologically realistic time scales as well as accelerate experimental processes. Experimental results from fabricated chips confirm the successful emulation of biologically inspired neural dynamics, demonstrating the feasibility of MRAM-based analog neuromorphic computation for real-time and scalable neural emulation.

基于mram的混合信号电路的可扩展神经网络仿真器。
在这项研究中,我们提出了一个混合信号框架,利用MRAM(磁阻随机存取存储器)技术来模拟在硅衬底上的生物神经网络中观察到的行为。虽然现代技术越来越多地从生物神经网络中汲取灵感,但充分理解这些复杂的系统仍然是一个重大挑战。我们的框架集成了多位MRAM突触阵列和模拟电路,以复制基本的神经功能,包括漏积分和火(LIF)动力学,兴奋性和抑制性突触后电位(EPSP和IPSP),不应期和侧抑制。在神经形态系统中使用MRAM的一个关键挑战是它的低通/关电阻比,这限制了电流模式模拟计算的准确性。为了克服这个问题,我们引入了一种电流减法架构,该架构可以基于MRAM状态可靠地生成多级突触电流。这可以实现鲁棒的模拟神经处理,同时保持MRAM的优势,如非易失性和CMOS兼容性。该芯片的可调工作频率使其能够复制生物学上真实的时间尺度,并加速实验过程。实验结果证实了生物启发神经动力学的成功模拟,证明了基于mram的模拟神经形态计算用于实时和可扩展神经仿真的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信