Ziqing Chen, Qi Liu, Jialei Wang, Nuo Ji, Yuhang Gong, Bo Gao
{"title":"Tooth image segmentation and root canal measurement based on deep learning.","authors":"Ziqing Chen, Qi Liu, Jialei Wang, Nuo Ji, Yuhang Gong, Bo Gao","doi":"10.3389/fbioe.2025.1565403","DOIUrl":null,"url":null,"abstract":"<p><strong>Indroduction: </strong>This study aims to develop a automated method for tooth segmentation and root canal measurement based on cone beam computed tomography (CBCT) images, providing objective, efficient, and accurate measurement results to guide and assist clinicians in root canal diagnosis grading, instrument selection, and preoperative planning.</p><p><strong>Methods: </strong>We utilizes Attention U-Net to recognize tooth descriptors, crops regions of interest (ROIs) based on the center of mass of these descriptors, and applies an integrated deep learning method for segmentation. The segmentation results are mapped back to the original coordinates and position-corrected, followed by automatic measurement and visualization of root canal lengths and angles.</p><p><strong>Results: </strong>Quantitative evaluation demonstrated a segmentation Dice coefficient of 96.33%, Jaccard coefficient of 92.94%, Hausdorff distance of 2.04 mm, and Average surface distance of 0.24 mm - all surpassing existing methods. The relative error of root canal length measurement was 3.42% (less than 5%), and the effect of auto-correction was recognized by clinicians.</p><p><strong>Discussion: </strong>The proposed segmentation method demonstrates favorable performance, with a relatively low relative error between automated and manual measurements, providing valuable reference for clinical applications.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1565403"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1565403","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Indroduction: This study aims to develop a automated method for tooth segmentation and root canal measurement based on cone beam computed tomography (CBCT) images, providing objective, efficient, and accurate measurement results to guide and assist clinicians in root canal diagnosis grading, instrument selection, and preoperative planning.
Methods: We utilizes Attention U-Net to recognize tooth descriptors, crops regions of interest (ROIs) based on the center of mass of these descriptors, and applies an integrated deep learning method for segmentation. The segmentation results are mapped back to the original coordinates and position-corrected, followed by automatic measurement and visualization of root canal lengths and angles.
Results: Quantitative evaluation demonstrated a segmentation Dice coefficient of 96.33%, Jaccard coefficient of 92.94%, Hausdorff distance of 2.04 mm, and Average surface distance of 0.24 mm - all surpassing existing methods. The relative error of root canal length measurement was 3.42% (less than 5%), and the effect of auto-correction was recognized by clinicians.
Discussion: The proposed segmentation method demonstrates favorable performance, with a relatively low relative error between automated and manual measurements, providing valuable reference for clinical applications.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.