Bing Yao, Qiangbing Yang, Christian J B Snijders Blok, Mark A Daniels, Pieter A Doevendans, Raymond Schiffelers, Joost P G Sluijter, Zhiyong Lei
{"title":"Insights into pegRNA design from editing of the cardiomyopathy-associated phospholamban R14del mutation.","authors":"Bing Yao, Qiangbing Yang, Christian J B Snijders Blok, Mark A Daniels, Pieter A Doevendans, Raymond Schiffelers, Joost P G Sluijter, Zhiyong Lei","doi":"10.1002/1873-3468.70097","DOIUrl":null,"url":null,"abstract":"<p><p>Prime editing (PE) represents a transformative genome-editing technology and enables precise insertions, deletions, and base substitutions without introducing double-strand breaks, thereby reducing undesired indels and off-target effects. Despite advancements in enhanced prime editors and optimized prime editing guide RNAs (pegRNAs), designing effective pegRNAs remains a major challenge. The phospholamban (PLN) R14del mutation is associated with cardiomyopathies, making it a crucial target for precise gene-editing strategies. In this study, we explored pegRNA features that contribute to high editing efficiency using the FluoPEER.PLN R14del reporter cell line. Through systematic screening, we identified three pegRNAs with significantly enhanced editing efficiency. Our findings underscore the importance of pegRNA secondary structure and stability in optimizing prime editing, providing valuable insights into precise gene correction strategies.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70097","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Prime editing (PE) represents a transformative genome-editing technology and enables precise insertions, deletions, and base substitutions without introducing double-strand breaks, thereby reducing undesired indels and off-target effects. Despite advancements in enhanced prime editors and optimized prime editing guide RNAs (pegRNAs), designing effective pegRNAs remains a major challenge. The phospholamban (PLN) R14del mutation is associated with cardiomyopathies, making it a crucial target for precise gene-editing strategies. In this study, we explored pegRNA features that contribute to high editing efficiency using the FluoPEER.PLN R14del reporter cell line. Through systematic screening, we identified three pegRNAs with significantly enhanced editing efficiency. Our findings underscore the importance of pegRNA secondary structure and stability in optimizing prime editing, providing valuable insights into precise gene correction strategies.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.