Epigallocatechin-3-Gallate Attenuates Benign Prostatic Hyperplasia Development via Regulating Firmicutes to Inhibit Gastric Secretion of Insulin-Like Growth Factor-1
{"title":"Epigallocatechin-3-Gallate Attenuates Benign Prostatic Hyperplasia Development via Regulating Firmicutes to Inhibit Gastric Secretion of Insulin-Like Growth Factor-1","authors":"Tianye Yang, YiQun Shao, Zhong Wang, Chong Liu, Meng Gu","doi":"10.1002/cbin.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Benign prostatic hyperplasia (BPH), a prevalent age-related condition in men, is increasingly linked to metabolic syndrome (MetS) and gut microbiota dysbiosis. This study reveals how Firmicutes-dominant microbial imbalance drives BPH progression via IGF-1 signaling and identifies the green tea polyphenol epigallocatechin-3-gallate (EGCG) as a dual-action therapeutic. Using MetS-BPH mouse models and human prostate cell lines, we demonstrated that BPH-associated gut microbiota—particularly elevated Firmicutes and an increased Firmicutes/Bacteroidetes ratio—promotes prostate hyperplasia by upregulating IGF-1. Both BPH mice and recipient mice transplanted with BPH microbiota showed elevated serum and prostate IGF-1 levels, mirroring findings in human BPH patients. Mechanistically, IGF-1 stimulated prostate cell proliferation (RWPE-1/WPMY-1) and suppressed apoptosis via PI3K/AKT/mTOR activation, while the IGF-1 antagonist Linsitinib reversed these effects. EGCG emerged as a potent modulator of this gut-prostate axis: it selectively reduced Firmicutes overgrowth in BPH mice, normalized IGF-1 levels, and inhibited downstream PI3K/AKT/mTOR signaling. In fecal microbiota transplantation experiments, EGCG counteracted IGF-1-driven prostate enlargement and microbial dysbiosis, underscoring its dual role in rebalancing gut flora and blocking growth factor pathways. Our findings position EGCG as a promising intervention for MetS-associated BPH, simultaneously targeting microbial dysbiosis and IGF-1 signaling. This study not only elucidates the Firmicutes–IGF-1 axis in BPH pathogenesis but also highlights the therapeutic potential of dietary polyphenols in metabolic urological disorders.</p></div>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 8","pages":"952-964"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.70032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Benign prostatic hyperplasia (BPH), a prevalent age-related condition in men, is increasingly linked to metabolic syndrome (MetS) and gut microbiota dysbiosis. This study reveals how Firmicutes-dominant microbial imbalance drives BPH progression via IGF-1 signaling and identifies the green tea polyphenol epigallocatechin-3-gallate (EGCG) as a dual-action therapeutic. Using MetS-BPH mouse models and human prostate cell lines, we demonstrated that BPH-associated gut microbiota—particularly elevated Firmicutes and an increased Firmicutes/Bacteroidetes ratio—promotes prostate hyperplasia by upregulating IGF-1. Both BPH mice and recipient mice transplanted with BPH microbiota showed elevated serum and prostate IGF-1 levels, mirroring findings in human BPH patients. Mechanistically, IGF-1 stimulated prostate cell proliferation (RWPE-1/WPMY-1) and suppressed apoptosis via PI3K/AKT/mTOR activation, while the IGF-1 antagonist Linsitinib reversed these effects. EGCG emerged as a potent modulator of this gut-prostate axis: it selectively reduced Firmicutes overgrowth in BPH mice, normalized IGF-1 levels, and inhibited downstream PI3K/AKT/mTOR signaling. In fecal microbiota transplantation experiments, EGCG counteracted IGF-1-driven prostate enlargement and microbial dysbiosis, underscoring its dual role in rebalancing gut flora and blocking growth factor pathways. Our findings position EGCG as a promising intervention for MetS-associated BPH, simultaneously targeting microbial dysbiosis and IGF-1 signaling. This study not only elucidates the Firmicutes–IGF-1 axis in BPH pathogenesis but also highlights the therapeutic potential of dietary polyphenols in metabolic urological disorders.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.