Asma Eskhan, Somayeh Ramezanian, Samuel Uzoechi, Nehal I Abu-Lail
{"title":"Spatial mapping of the conformational and mechanical properties of bacterial surface biopolymers.","authors":"Asma Eskhan, Somayeh Ramezanian, Samuel Uzoechi, Nehal I Abu-Lail","doi":"10.1116/6.0004587","DOIUrl":null,"url":null,"abstract":"<p><p>Forces acting between an atomic force microscopy silicon nitride cantilever and the bacterial surface biopolymers of Escherichia coli or Pseudomonas putida were spatially probed in water. The interactions were fitted to a model of steric repulsion to estimate the bacterial surface biopolymer brush length and grafting density. The forces were further fitted to a Hertz model of contact mechanics modified by Sneddon et al. to quantify Young's modulus of elasticity for the cells. Contour plots of the quantified properties described above (i.e., the bacterial surface biopolymer brush length and grafting density, and Young's modulus of elasticity for the cells) based on the location coordinates on the bacterial surfaces were generated. Our contour plots indicated the bacterial cells organize their biopolymers uniquely to help them survive in the environment. Specifically, our results showed that the perimeter of a bacterial cell is characterized by a more flexible as well as longer biopolymer brush compared to those estimated at the center top of the cell. These results suggest that bacteria are likely to use their longer brushes on the edges to facilitate their adhesion by bridging surfaces. Also, they maintain their structural reinforcement by developing higher densities of grafted biopolymers and hence higher elasticities at their centers. Moreover, a stronger linear relationship was observed between the brush thicknesses and the grafting densities for the collapsed brush at the center of the cells when compared to the perimeter of the cells.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004587","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Forces acting between an atomic force microscopy silicon nitride cantilever and the bacterial surface biopolymers of Escherichia coli or Pseudomonas putida were spatially probed in water. The interactions were fitted to a model of steric repulsion to estimate the bacterial surface biopolymer brush length and grafting density. The forces were further fitted to a Hertz model of contact mechanics modified by Sneddon et al. to quantify Young's modulus of elasticity for the cells. Contour plots of the quantified properties described above (i.e., the bacterial surface biopolymer brush length and grafting density, and Young's modulus of elasticity for the cells) based on the location coordinates on the bacterial surfaces were generated. Our contour plots indicated the bacterial cells organize their biopolymers uniquely to help them survive in the environment. Specifically, our results showed that the perimeter of a bacterial cell is characterized by a more flexible as well as longer biopolymer brush compared to those estimated at the center top of the cell. These results suggest that bacteria are likely to use their longer brushes on the edges to facilitate their adhesion by bridging surfaces. Also, they maintain their structural reinforcement by developing higher densities of grafted biopolymers and hence higher elasticities at their centers. Moreover, a stronger linear relationship was observed between the brush thicknesses and the grafting densities for the collapsed brush at the center of the cells when compared to the perimeter of the cells.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.