EyeHex toolbox for complete segmentation of ommatidia in fruit fly eyes.

IF 1.7 4区 生物学 Q3 BIOLOGY
Biology Open Pub Date : 2025-06-15 Epub Date: 2025-06-23 DOI:10.1242/bio.061962
Huy Tran, Nathalie Dostatni, Ariane Ramaekers
{"title":"EyeHex toolbox for complete segmentation of ommatidia in fruit fly eyes.","authors":"Huy Tran, Nathalie Dostatni, Ariane Ramaekers","doi":"10.1242/bio.061962","DOIUrl":null,"url":null,"abstract":"<p><p>Variation in Drosophila compound eye size is studied across research fields, from evolutionary biology to biomedical studies, requiring the collection of large datasets to ensure robust statistical analyses. To address this, we present EyeHex, a Matlab-based tool for automatic segmentation of fruit fly compound eyes from brightfield and scanning electron microscopy (SEM) images. EyeHex features two integrated modules: the first uses machine learning to generate probability maps of the eye and ommatidia locations, while the second, a hard-coded module, leverages the hexagonal organization of the compound eye to map individual ommatidia. This iterative segmentation process, which adds one ommatidium at a time based on registered neighbors, ensures robustness to local perturbations. EyeHex also includes an analysis tool that calculates key metrics of the eye, such as ommatidia count and diameter distribution across the eye. With minimal user input for training and application, EyeHex achieves exceptional accuracy (>99.6% compared to manual counts on SEM images) and adapts to different fly strains, species, and image types. EyeHex offers a cost-effective, rapid, and flexible pipeline for extracting detailed statistical data on Drosophila compound eye variation, making it a valuable resource for high-throughput studies.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"14 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233063/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061962","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Variation in Drosophila compound eye size is studied across research fields, from evolutionary biology to biomedical studies, requiring the collection of large datasets to ensure robust statistical analyses. To address this, we present EyeHex, a Matlab-based tool for automatic segmentation of fruit fly compound eyes from brightfield and scanning electron microscopy (SEM) images. EyeHex features two integrated modules: the first uses machine learning to generate probability maps of the eye and ommatidia locations, while the second, a hard-coded module, leverages the hexagonal organization of the compound eye to map individual ommatidia. This iterative segmentation process, which adds one ommatidium at a time based on registered neighbors, ensures robustness to local perturbations. EyeHex also includes an analysis tool that calculates key metrics of the eye, such as ommatidia count and diameter distribution across the eye. With minimal user input for training and application, EyeHex achieves exceptional accuracy (>99.6% compared to manual counts on SEM images) and adapts to different fly strains, species, and image types. EyeHex offers a cost-effective, rapid, and flexible pipeline for extracting detailed statistical data on Drosophila compound eye variation, making it a valuable resource for high-throughput studies.

EyeHex工具箱用于果蝇眼睛中小眼的完整分割。
从进化生物学到生物医学研究,果蝇复眼大小的变化在各个研究领域都有研究,需要收集大量数据集来确保可靠的统计分析。为了解决这个问题,我们提出了EyeHex,一个基于matlab的工具,用于从明场和扫描电子显微镜(SEM)图像中自动分割果蝇复眼。EyeHex具有两个集成模块:第一个使用机器学习生成眼睛和小眼位置的概率图,而第二个是硬编码模块,利用复眼的六边形组织来映射单个小眼。这种迭代分割过程,每次增加一个基于注册邻居的小本,保证了对局部扰动的鲁棒性。EyeHex还包括一个分析工具,可以计算眼睛的关键指标,如眼内小眼数和直径分布。与最小的用户输入训练和应用程序,EyeHex实现了卓越的准确性(>99.6%相比,手动计数扫描电镜图像),并适应不同的蝇株,物种和图像类型。EyeHex为提取果蝇复眼变异的详细统计数据提供了一个经济、快速和灵活的管道,使其成为高通量研究的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信