Ernesto Pino-Cortés, Mariela Martínez, Katherine Gómez, Fernando González Taboada, Joshua S Fu, Golam Sarwar, Rafael P Fernandez, Sankirna D Joge, Anoop S Mahajan, Juan Höfer
{"title":"Simulating the Fate of Dimethyl Sulfide (DMS) in the Atmosphere: A Review of Emission and Chemical Parameterizations.","authors":"Ernesto Pino-Cortés, Mariela Martínez, Katherine Gómez, Fernando González Taboada, Joshua S Fu, Golam Sarwar, Rafael P Fernandez, Sankirna D Joge, Anoop S Mahajan, Juan Höfer","doi":"10.3390/atmos16030350","DOIUrl":null,"url":null,"abstract":"<p><p>Numerical simulation studies of the dispersion of dimethyl sulfide (DMS) in the air have increased over the last two decades in parallel with the interest in understanding its role as a precursor of non-sea salt aerosols in the lower to middle levels of the troposphere. Here, we review recent numerical modeling studies that have included DMS emissions, their atmospheric oxidation mechanism, and their subsequent impacts on air quality at regional and global scales. In addition, we discuss the available methods for estimating sea-air DMS fluxes, including parameterizations and climatological datasets, as well as their integration into air quality models. At the regional level, modeling studies focus on the Northern Hemisphere, presenting a large gap in Antarctica, Africa, and the Atlantic coast of South America, whereas at the global scale, modeling studies tend to focus more on polar regions, especially the Arctic. Future studies must consider updated climatologies and parameterizations for more realistic results and the reduction in biases in numerical simulations analysis.</p>","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"16 3","pages":"350"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos16030350","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical simulation studies of the dispersion of dimethyl sulfide (DMS) in the air have increased over the last two decades in parallel with the interest in understanding its role as a precursor of non-sea salt aerosols in the lower to middle levels of the troposphere. Here, we review recent numerical modeling studies that have included DMS emissions, their atmospheric oxidation mechanism, and their subsequent impacts on air quality at regional and global scales. In addition, we discuss the available methods for estimating sea-air DMS fluxes, including parameterizations and climatological datasets, as well as their integration into air quality models. At the regional level, modeling studies focus on the Northern Hemisphere, presenting a large gap in Antarctica, Africa, and the Atlantic coast of South America, whereas at the global scale, modeling studies tend to focus more on polar regions, especially the Arctic. Future studies must consider updated climatologies and parameterizations for more realistic results and the reduction in biases in numerical simulations analysis.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.