{"title":"Unveiling mysteries of aging: the potential of melatonin in preventing neurodegenerative diseases in older adults.","authors":"Omer Unal, Nilufer Akgun-Unal, Abdulkerim Kasim Baltaci","doi":"10.1007/s10522-025-10254-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, result in a substantial health problem for the elderly, marked by ongoing neuronal degeneration and a deterioration in mental faculties. These disorders are frequently linked to oxidative stress, problems with mitochondria, and persistent inflammation in the brain, which worsen neuronal damage. The neurohormone melatonin, primarily secreted by the pineal gland, has gained recognition as a promising therapeutic agent due to its antioxidant, anti-inflammatory, and neuroprotective effects. Melatonin's functions extend beyond its regulation of circadian rhythms, as research has demonstrated its ability to remove free radicals, improve mitochondrial performance, and adjust immune system responses, ultimately reducing the progression of neurodegenerative disease. Research findings from preclinical and clinical trials imply that taking melatonin supplements could lead to improved cognitive abilities, slower disease progression, and an overall better quality of life for elderly individuals suffering from neurodegenerative conditions. The mechanisms through which melatonin acts, the best dosage, and its long-term effectiveness are still being researched. This review underscores the potential benefits of melatonin as a supplementary treatment for neurodegenerative disorders in older adults, stressing the necessity for additional studies to confirm its efficacy and standardize its use in treatment plans.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 4","pages":"125"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10254-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, result in a substantial health problem for the elderly, marked by ongoing neuronal degeneration and a deterioration in mental faculties. These disorders are frequently linked to oxidative stress, problems with mitochondria, and persistent inflammation in the brain, which worsen neuronal damage. The neurohormone melatonin, primarily secreted by the pineal gland, has gained recognition as a promising therapeutic agent due to its antioxidant, anti-inflammatory, and neuroprotective effects. Melatonin's functions extend beyond its regulation of circadian rhythms, as research has demonstrated its ability to remove free radicals, improve mitochondrial performance, and adjust immune system responses, ultimately reducing the progression of neurodegenerative disease. Research findings from preclinical and clinical trials imply that taking melatonin supplements could lead to improved cognitive abilities, slower disease progression, and an overall better quality of life for elderly individuals suffering from neurodegenerative conditions. The mechanisms through which melatonin acts, the best dosage, and its long-term effectiveness are still being researched. This review underscores the potential benefits of melatonin as a supplementary treatment for neurodegenerative disorders in older adults, stressing the necessity for additional studies to confirm its efficacy and standardize its use in treatment plans.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.