Sakshi Chaudhary, Mani Raj Chaudhary, Manoj Kumar Jena, Prasana Kumar Rath, Bidyut Prava Mishra, Biswaranjan Paital, Ashish Vyas, Dipak Kumar Sahoo, Prabhakar Singh, Mohammad Murtaza Mehdi
{"title":"Calorie restriction mimetics against aging and inflammation.","authors":"Sakshi Chaudhary, Mani Raj Chaudhary, Manoj Kumar Jena, Prasana Kumar Rath, Bidyut Prava Mishra, Biswaranjan Paital, Ashish Vyas, Dipak Kumar Sahoo, Prabhakar Singh, Mohammad Murtaza Mehdi","doi":"10.1007/s10522-025-10269-0","DOIUrl":null,"url":null,"abstract":"<p><p>Geroprotectors, a class of compounds that ameliorate molecular, cellular, or physiological aging-related alterations, have garnered significant attention in the quest to promote healthy aging and extend the human health span. Among these, Calorie Restriction Mimetics (CRMs) have emerged as promising candidates due to their potential to mimic the benefits of calorie restriction, a dietary approach involving reduced calorie intake without malnutrition. Prospective CRMs may include biguanides (metformin and aminoguanidine), which exert effects on the insulin signaling pathway; rapamycin, which interacts with mTOR signaling pathways; and stilbenes (resveratrol), which influences stress signaling pathways and promotes the activation of AMPK, impacting mitochondrial metabolism in addition to the activity of FOXO and sirtuin. Other compounds, such as glycolytic inhibitors, carbohydrate and lipid absorption blockers, polyamines, and polyphenols, which collectively modulate pathways regulating the effects of free radicals, are also under consideration. To propose prospective geroprotective strategies, this article focuses on analyzing the functions of potential CRMs and their mechanisms demonstrating health benefits, the same as that of CR (Calorie Restriction), but without undesirable side effects.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 4","pages":"126"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10269-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Geroprotectors, a class of compounds that ameliorate molecular, cellular, or physiological aging-related alterations, have garnered significant attention in the quest to promote healthy aging and extend the human health span. Among these, Calorie Restriction Mimetics (CRMs) have emerged as promising candidates due to their potential to mimic the benefits of calorie restriction, a dietary approach involving reduced calorie intake without malnutrition. Prospective CRMs may include biguanides (metformin and aminoguanidine), which exert effects on the insulin signaling pathway; rapamycin, which interacts with mTOR signaling pathways; and stilbenes (resveratrol), which influences stress signaling pathways and promotes the activation of AMPK, impacting mitochondrial metabolism in addition to the activity of FOXO and sirtuin. Other compounds, such as glycolytic inhibitors, carbohydrate and lipid absorption blockers, polyamines, and polyphenols, which collectively modulate pathways regulating the effects of free radicals, are also under consideration. To propose prospective geroprotective strategies, this article focuses on analyzing the functions of potential CRMs and their mechanisms demonstrating health benefits, the same as that of CR (Calorie Restriction), but without undesirable side effects.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.