How do different cell populations orchestrate myelin regeneration?

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sara Grassi, Alessandro Prinetti
{"title":"How do different cell populations orchestrate myelin regeneration?","authors":"Sara Grassi, Alessandro Prinetti","doi":"10.1042/BST20231085","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately 35 in 100,000 people are affected by diseases associated with loss of myelin, generally described as demyelinating diseases. Demyelinating diseases encompass many different pathological conditions characterized by heterogeneous and sometimes disease-specific etiopathological mechanisms. While several approaches aimed at ameliorating the symptoms and the progression of some of these diseases exist, the most effective cure for all demyelinating diseases would be regeneration of lost myelin. Myelin regeneration occurs spontaneously in the central nervous system in response to myelin damage but is inefficient for a variety of reasons, especially in human patients. In this review, we will discuss the contributions of different cell populations to the creation of conditions permissive for effective remyelination and to the formation of new myelin after injury. Moreover, we would like to highlight the importance of sphingolipids in the network of interactions between these cell populations. Mutations in genes encoding sphingolipid metabolic enzymes (such as GALC) represent a major risk factor for multiple sclerosis, and alterations in sphingolipid metabolism in specific cell types contribute to myelin damage. On the other hand, sphingolipid signaling, in particular through sphingosine 1 phosphate, directly affects the process of myelin regeneration, with distinct effects on different cellular populations.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"653-669"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231085","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately 35 in 100,000 people are affected by diseases associated with loss of myelin, generally described as demyelinating diseases. Demyelinating diseases encompass many different pathological conditions characterized by heterogeneous and sometimes disease-specific etiopathological mechanisms. While several approaches aimed at ameliorating the symptoms and the progression of some of these diseases exist, the most effective cure for all demyelinating diseases would be regeneration of lost myelin. Myelin regeneration occurs spontaneously in the central nervous system in response to myelin damage but is inefficient for a variety of reasons, especially in human patients. In this review, we will discuss the contributions of different cell populations to the creation of conditions permissive for effective remyelination and to the formation of new myelin after injury. Moreover, we would like to highlight the importance of sphingolipids in the network of interactions between these cell populations. Mutations in genes encoding sphingolipid metabolic enzymes (such as GALC) represent a major risk factor for multiple sclerosis, and alterations in sphingolipid metabolism in specific cell types contribute to myelin damage. On the other hand, sphingolipid signaling, in particular through sphingosine 1 phosphate, directly affects the process of myelin regeneration, with distinct effects on different cellular populations.

不同的细胞群如何协调髓磷脂再生?
大约每10万人中就有35人患有与髓磷脂丧失相关的疾病,通常被称为脱髓鞘疾病。脱髓鞘疾病包括许多不同的病理条件,其特点是异质性的,有时是疾病特异性的病因病理机制。虽然有几种方法旨在改善这些疾病的症状和进展,但对所有脱髓鞘疾病最有效的治疗方法是再生丢失的髓磷脂。髓磷脂再生是中枢神经系统对髓磷脂损伤的自发反应,但由于各种原因而效率低下,特别是在人类患者中。在这篇综述中,我们将讨论不同的细胞群对创造有效髓鞘再生的条件和损伤后新髓鞘形成的贡献。此外,我们想强调鞘脂在这些细胞群之间相互作用网络中的重要性。编码鞘脂代谢酶(如GALC)的基因突变是多发性硬化症的主要危险因素,特定细胞类型鞘脂代谢的改变有助于髓磷脂损伤。另一方面,鞘脂信号,特别是通过鞘磷脂1磷酸,直接影响髓磷脂再生过程,对不同细胞群体的影响不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信