High-Performance Rechargeable Lithium-Chlorine Batteries with ALD Conformal Starburst Porous Graphene Positive Electrodes.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhuo Yang, Yanan Huang, Weicheng Zhou, Hong Fan, Zhihao Ding, Xu Yan, Yu Lu, Alexander S Sigov, Wei Huang, Lijun Gao, Cheng Huang
{"title":"High-Performance Rechargeable Lithium-Chlorine Batteries with ALD Conformal Starburst Porous Graphene Positive Electrodes.","authors":"Zhuo Yang, Yanan Huang, Weicheng Zhou, Hong Fan, Zhihao Ding, Xu Yan, Yu Lu, Alexander S Sigov, Wei Huang, Lijun Gao, Cheng Huang","doi":"10.1002/advs.202503113","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable alkali metal-chlorine batteries are emerging as a promising high-energy-density solution. However, they confront significant challenges, including the primary issue stemming from the weak binding affinity of cathode materials for Cl<sub>2</sub>, which leads to a sluggish and inadequate supply of Cl<sub>2</sub> during the redox reactions, resulting in a shortened cycle life and low Coulombic efficiency (CE), particularly when operating at ultrahigh specific capacity outputs. Herein, an Al<sub>2</sub>O<sub>3</sub>-skinned heterostructured starburst porous graphene with conformal metasurfaces (Al<sub>2</sub>O<sub>3</sub>@rGO) is reported, crafted from a hierarchical porous starburst graphene arranged in a unique layered structure by the PTFE microemulsion skin effect, leveraging subsequent fluidized bed atomic layer deposition (FBALD) of Al<sub>2</sub>O<sub>3</sub> groups. Al<sub>2</sub>O<sub>3</sub>@rGO features superhydrophilicity, effective adsorption, fast kinetics from stable dynamic respiratory interface, high electrical and thermal conductivity anisotropy, intelligent thermal management and safe operation over a wide temperature range. Consequently, the Li-Cl<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub>@rGO battery achieves an ultrahigh discharge specific capacity of 5000 mAh g<sup>-1</sup> at ≈100% CE, and even delivers stable cycling over 200 cycles with 2000 mAh g<sup>-1</sup> at an average CE of 99.8% under low temperature environment of -40 °C. The scalable heterostructure approach offers a sustainable perspective of the development of functionalized metamaterials and metasurfaces for next-generation safe and energy-dense batteries and broader applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e03113"},"PeriodicalIF":14.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202503113","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable alkali metal-chlorine batteries are emerging as a promising high-energy-density solution. However, they confront significant challenges, including the primary issue stemming from the weak binding affinity of cathode materials for Cl2, which leads to a sluggish and inadequate supply of Cl2 during the redox reactions, resulting in a shortened cycle life and low Coulombic efficiency (CE), particularly when operating at ultrahigh specific capacity outputs. Herein, an Al2O3-skinned heterostructured starburst porous graphene with conformal metasurfaces (Al2O3@rGO) is reported, crafted from a hierarchical porous starburst graphene arranged in a unique layered structure by the PTFE microemulsion skin effect, leveraging subsequent fluidized bed atomic layer deposition (FBALD) of Al2O3 groups. Al2O3@rGO features superhydrophilicity, effective adsorption, fast kinetics from stable dynamic respiratory interface, high electrical and thermal conductivity anisotropy, intelligent thermal management and safe operation over a wide temperature range. Consequently, the Li-Cl2@Al2O3@rGO battery achieves an ultrahigh discharge specific capacity of 5000 mAh g-1 at ≈100% CE, and even delivers stable cycling over 200 cycles with 2000 mAh g-1 at an average CE of 99.8% under low temperature environment of -40 °C. The scalable heterostructure approach offers a sustainable perspective of the development of functionalized metamaterials and metasurfaces for next-generation safe and energy-dense batteries and broader applications.

具有ALD共形星爆多孔石墨烯正极的高性能可充电锂氯电池。
可充电碱金属-氯电池是一种很有前途的高能量密度解决方案。然而,他们面临着重大的挑战,包括主要问题源于阴极材料对Cl2的弱结合亲和力,这导致氧化还原反应中Cl2供应缓慢和不足,导致循环寿命缩短和低库仑效率(CE),特别是在超高比容量输出下操作时。本文报道了一种具有保形超表面的Al2O3包覆的异质结构星爆多孔石墨烯(Al2O3@rGO),该材料由层次化多孔星爆石墨烯制成,通过聚四氟乙烯微乳液包覆效应形成独特的层状结构,利用Al2O3基团的后续流化床原子层沉积(FBALD)。Al2O3@rGO具有超亲水性,有效吸附,稳定动态呼吸界面的快速动力学,高电导率和导热系数各向异性,智能热管理和宽温度范围内的安全操作。因此,Li-Cl2@Al2O3@rGO电池在≈100% CE下实现了5000 mAh g-1的超高放电比容量,甚至在-40°C的低温环境下,以2000 mAh g-1在平均CE为99.8%的情况下实现了200次的稳定循环。可扩展异质结构方法为功能化超材料和超表面的发展提供了可持续的前景,为下一代安全和高能量电池以及更广泛的应用提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信