Thiazole-Flanked Para-Azaquinodimethane-Based Organic Polymer Semiconductors: Synthesis and Optoelectronic Properties.

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jasmine P Jacob, Bharath Dyaga, Mahtab Miralaei, Sasikumar Mayarambakam, Olivier Boyron, Paul W M Blom, Wojciech Pisula, Bruno Schmaltz
{"title":"Thiazole-Flanked Para-Azaquinodimethane-Based Organic Polymer Semiconductors: Synthesis and Optoelectronic Properties.","authors":"Jasmine P Jacob, Bharath Dyaga, Mahtab Miralaei, Sasikumar Mayarambakam, Olivier Boyron, Paul W M Blom, Wojciech Pisula, Bruno Schmaltz","doi":"10.1002/asia.202500215","DOIUrl":null,"url":null,"abstract":"<p><p>Modifying the polymer backbone through N⋯S non-covalent interactions is an effective approach to enhance the properties of organic semiconducting polymers. Following this strategy, we designed and synthesized two new quinoidal polymers based on asymmetric and symmetric thiazole-flanked para-azaquinodimethane (p-AQM), named PAQM-TTTz and PAQM-TzTTz. To assess the impact of the thiazole unit, we also synthesized a reference polymer, PAQM-TTT, and compared its optoelectronic, thermal, and polymer backbone planarity properties with those of PAQM-TTTz and PAQM-TzTTz. Both PAQM-TTTz and PAQM-TzTTz exhibited dual-band absorption in solution, indicating pre-aggregation due to enhanced intermolecular interactions. Both polymers exhibited a low band gap. Density functional theory (DFT) studies revealed that while the thiazole unit does not alter the bond lengths of adjacent thiophenes, but it reduces torsional disorder by forming N⋯S non-covalent interactions with adjacent thiophenes in PAQM-TTTz and PAQM-TzTTz. However, due to the reduced electron richness of the conjugated backbone, a lower charge carrier mobility was observed in field-effect transistors for PAQM-TTTz and PAQM-TzTTz in comparison to PAQM-TTT. Our results highlighted the interest of non-covalent interactions in quinoidal polymers and present an alternative design strategy to control the properties of p-AQM-based quinoidal semiconducting polymers.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00215"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500215","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modifying the polymer backbone through N⋯S non-covalent interactions is an effective approach to enhance the properties of organic semiconducting polymers. Following this strategy, we designed and synthesized two new quinoidal polymers based on asymmetric and symmetric thiazole-flanked para-azaquinodimethane (p-AQM), named PAQM-TTTz and PAQM-TzTTz. To assess the impact of the thiazole unit, we also synthesized a reference polymer, PAQM-TTT, and compared its optoelectronic, thermal, and polymer backbone planarity properties with those of PAQM-TTTz and PAQM-TzTTz. Both PAQM-TTTz and PAQM-TzTTz exhibited dual-band absorption in solution, indicating pre-aggregation due to enhanced intermolecular interactions. Both polymers exhibited a low band gap. Density functional theory (DFT) studies revealed that while the thiazole unit does not alter the bond lengths of adjacent thiophenes, but it reduces torsional disorder by forming N⋯S non-covalent interactions with adjacent thiophenes in PAQM-TTTz and PAQM-TzTTz. However, due to the reduced electron richness of the conjugated backbone, a lower charge carrier mobility was observed in field-effect transistors for PAQM-TTTz and PAQM-TzTTz in comparison to PAQM-TTT. Our results highlighted the interest of non-covalent interactions in quinoidal polymers and present an alternative design strategy to control the properties of p-AQM-based quinoidal semiconducting polymers.

噻唑双侧对氮杂基有机聚合物半导体:合成与光电性能。
通过N - S非共价相互作用修饰聚合物骨架是增强有机半导体聚合物性能的有效方法。根据这一策略,我们设计并合成了两种新的基于不对称和对称噻唑侧对氮杂喹二甲烷(p-AQM)的喹类聚合物,命名为PAQM-TTTz和PAQM-TzTTz。为了评估噻唑单元的影响,我们还合成了一种参考聚合物PAQM-TTT,并将其光电、热学和聚合物主平面性与PAQM-TTTz和PAQM-TzTTz进行了比较。PAQM-TTTz和PAQM-TzTTz在溶液中均表现出双频吸收,表明由于分子间相互作用增强而发生了预聚集。两种聚合物都具有较低的带隙。密度泛函理论(DFT)研究表明,虽然噻唑单元不会改变邻近噻吩的键长,但它通过在PAQM-TTTz和PAQM-TzTTz中与邻近噻吩形成N⋯S非共价相互作用来减少扭转紊乱。然而,由于共轭主链的电子丰富度降低,在PAQM-TTTz和PAQM-TzTTz场效应晶体管中,与PAQM-TTT相比,电荷载流子迁移率较低。我们的结果突出了quinoidal聚合物中非共价相互作用的兴趣,并提出了一种替代的设计策略来控制基于p- aqm的quinoidal半导体聚合物的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信