Longer Duct, Better Silk: Unveiling How Anterior Silk Gland Length Boosts Fiber Performance.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2025-07-14 Epub Date: 2025-06-23 DOI:10.1021/acs.biomac.5c00275
Qing Huang, Xiaonuo Hu, Xinyu Fan, Yuchen Li, Ming Wei, Xinning Li, Kecen Liu, Zihan Lin, Yi Li, Zhaoming Dong, Ping Zhao, Qingyou Xia, Xin Wang
{"title":"Longer Duct, Better Silk: Unveiling How Anterior Silk Gland Length Boosts Fiber Performance.","authors":"Qing Huang, Xiaonuo Hu, Xinyu Fan, Yuchen Li, Ming Wei, Xinning Li, Kecen Liu, Zihan Lin, Yi Li, Zhaoming Dong, Ping Zhao, Qingyou Xia, Xin Wang","doi":"10.1021/acs.biomac.5c00275","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical performance of silk is closely tied to the fibrillization process within the anterior segment of silk gland (ASG). While a long and narrow ASG is conserved across silk-spinning species, its biological role remains unclear. Here, we performed a comprehensive structure-function analysis of the silkworm ASG and revealed that its long and narrow morphology plays an essential role in silk fibrillization and fiber performance. A steep reduction in duct diameter at the ASG's onset initiates silk protein transformation, while the extended duct length promotes molecular alignment, crystallization, and orientation. Genetic manipulation to extend ASG length significantly increased the Young's modulus and toughness of silkworm silk fibers. These findings demonstrate the potential of ASG length modulation as an effective strategy to improve silk fiber performance and provide valuable insights into the biological and functional importance of silk gland morphology.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"4262-4273"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00275","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical performance of silk is closely tied to the fibrillization process within the anterior segment of silk gland (ASG). While a long and narrow ASG is conserved across silk-spinning species, its biological role remains unclear. Here, we performed a comprehensive structure-function analysis of the silkworm ASG and revealed that its long and narrow morphology plays an essential role in silk fibrillization and fiber performance. A steep reduction in duct diameter at the ASG's onset initiates silk protein transformation, while the extended duct length promotes molecular alignment, crystallization, and orientation. Genetic manipulation to extend ASG length significantly increased the Young's modulus and toughness of silkworm silk fibers. These findings demonstrate the potential of ASG length modulation as an effective strategy to improve silk fiber performance and provide valuable insights into the biological and functional importance of silk gland morphology.

更长的管道,更好的丝:揭示前丝腺长度如何提高纤维性能。
丝的力学性能与丝腺前段的成纤维过程密切相关。虽然长而窄的ASG在丝织物种中是保守的,但其生物学作用尚不清楚。本文对家蚕ASG进行了全面的结构功能分析,发现其长而窄的形态对蚕丝的成纤维和纤维性能起着至关重要的作用。在ASG开始时,管道直径的急剧减少启动了丝蛋白转化,而管道长度的延长促进了分子的排列、结晶和取向。通过基因操作延长纤维长度,可以显著提高蚕丝纤维的杨氏模量和韧性。这些发现证明了ASG长度调节作为一种有效的策略来改善蚕丝纤维性能的潜力,并为蚕丝腺形态的生物学和功能重要性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信