Zelin Li, Yi Zhang, Jun Liang, Fengyu Jia, Jiacai Song, Demeng Sun, Chaowei Shi, Changlin Tian, Pan Shi
{"title":"Solution NMR Analysis Reveals Synergistic β-Arrestin1 Activation by Chemically Synthesized Phosphopeptides of a C-Terminal Tail and ICL3 of NTSR1.","authors":"Zelin Li, Yi Zhang, Jun Liang, Fengyu Jia, Jiacai Song, Demeng Sun, Chaowei Shi, Changlin Tian, Pan Shi","doi":"10.1021/acschembio.5c00257","DOIUrl":null,"url":null,"abstract":"<p><p>β-Arrestins are critical regulators of G-protein-coupled receptors (GPCRs), mediating desensitization, internalization, and activation of alternative downstream signal transduction pathways through selective binding to phosphorylated GPCRs. Although phosphorylation of C-terminal tails (C-tail) and intracellular loop 3 (ICL3) of GPCRs is essential for β-arrestin binding to GPCRs, cooperative interactions of the phosphorylated C-tail or ICL3 of GPCRs for β-arrestin recruitment remain elusive. Here, we chemically synthesized phosphorylated C-tail and ICL3 peptides of neurotensin receptor 1 (NTSR1) and investigated the conformational dynamics of β-arrestin1 during its interaction with the phosphopeptides. Two-dimensional <sup>1</sup>H-<sup>13</sup>C nuclear magnetic resonance (NMR) spectroscopy of <sup>13</sup>C<sup>ε</sup>H3-methionine labeled β-arrestin1 revealed that the phosphorylated C-tail (C-tail-NC 6P), N-cluster of C-tail (C-tail-N 3P), or ICL3 4P triggered conformational changes of β-arrestin1, whereas the C-cluster of the C-tail (C-tail-C 3P) exhibited negligible influence. Additionally, analysis of successive binding of C-tail-NC 6P and ICL3 4P of NTSR1 to β-arrestin1 implied noncompetitive binding of the two segments and displayed allosteric modulation of C-tail or ICL3 in β-arrestin1. These 2D <sup>13</sup>C-methyl-Met NMR data provide direct evidence for interactions between β-arrestin1 and phosphorylated segments of GPCRs, offering a framework to decode the details of β-arrestin signaling.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00257","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
β-Arrestins are critical regulators of G-protein-coupled receptors (GPCRs), mediating desensitization, internalization, and activation of alternative downstream signal transduction pathways through selective binding to phosphorylated GPCRs. Although phosphorylation of C-terminal tails (C-tail) and intracellular loop 3 (ICL3) of GPCRs is essential for β-arrestin binding to GPCRs, cooperative interactions of the phosphorylated C-tail or ICL3 of GPCRs for β-arrestin recruitment remain elusive. Here, we chemically synthesized phosphorylated C-tail and ICL3 peptides of neurotensin receptor 1 (NTSR1) and investigated the conformational dynamics of β-arrestin1 during its interaction with the phosphopeptides. Two-dimensional 1H-13C nuclear magnetic resonance (NMR) spectroscopy of 13CεH3-methionine labeled β-arrestin1 revealed that the phosphorylated C-tail (C-tail-NC 6P), N-cluster of C-tail (C-tail-N 3P), or ICL3 4P triggered conformational changes of β-arrestin1, whereas the C-cluster of the C-tail (C-tail-C 3P) exhibited negligible influence. Additionally, analysis of successive binding of C-tail-NC 6P and ICL3 4P of NTSR1 to β-arrestin1 implied noncompetitive binding of the two segments and displayed allosteric modulation of C-tail or ICL3 in β-arrestin1. These 2D 13C-methyl-Met NMR data provide direct evidence for interactions between β-arrestin1 and phosphorylated segments of GPCRs, offering a framework to decode the details of β-arrestin signaling.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.