Climate Feedbacks Derived From Spatial Gradients in Recent Climatology

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
P. Goodwin, R. G. Williams, P. Ceppi, B. B. Cael
{"title":"Climate Feedbacks Derived From Spatial Gradients in Recent Climatology","authors":"P. Goodwin,&nbsp;R. G. Williams,&nbsp;P. Ceppi,&nbsp;B. B. Cael","doi":"10.1029/2024JD043186","DOIUrl":null,"url":null,"abstract":"<p>Climate feedbacks, including Planck, surface albedo, water vapor-lapse rate (WVLR) and cloud feedbacks, determine how much surface temperatures will eventually warm to balance anthropogenic radiative forcing. Climate feedbacks remain difficult to constrain directly from temporal variation in observed surface warming and radiation budgets due to the pattern effect and low signal-to-noise ratio, with only order 1°C historic rise in surface temperatures and high uncertainty in aerosol radiative forcing. This study presents a new method to analyze climate feedbacks from observations by empirically fitting simplified reduced-physics relations for outgoing radiation at the top of the atmosphere (TOA) to observed spatial variation in climate properties and radiation budgets. Spatial variations in TOA outgoing radiation are dominated by the dependence on surface temperature: around 91% of the spatial variation in clear sky albedo, and 77% of spatial variation in clear sky TOA outgoing longwave radiation, is functionally explained by variation in surface temperatures. These simplified and observationally constrained relations are then differentiated with respect to spatial contrasts in surface temperature to reveal the Planck, fixed-cloud albedo (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mtext>albedo</mtext>\n </msub>\n </mrow>\n <annotation> ${\\lambda }_{\\text{albedo}}$</annotation>\n </semantics></math>) and WVLR (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mtext>WVLR</mtext>\n </msub>\n </mrow>\n <annotation> ${\\lambda }_{\\text{WVLR}}$</annotation>\n </semantics></math>) climate feedbacks spatially for both clear sky and all sky conditions. The resulting global all sky climate feedback values are <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mtext>WVLR</mtext>\n </msub>\n </mrow>\n <annotation> ${\\lambda }_{\\text{WVLR}}$</annotation>\n </semantics></math> = 1.28 (1.13–1.45 at 66%) Wm<sup>−2</sup>K<sup>−1</sup>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mtext>albedo</mtext>\n </msub>\n </mrow>\n <annotation> ${\\lambda }_{\\text{albedo}}$</annotation>\n </semantics></math> = 0.64 (0.53–0.74) Wm<sup>−2</sup> for the period 2003–2023, reducing to 0.35 (0.29–0.41) Wm<sup>−2</sup>K<sup>−1</sup> under 4°C warming after cryosphere retreat. Our findings agree well with complex Earth system model evaluations based on temporal climate perturbations, and our approach is complementary.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD043186","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD043186","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate feedbacks, including Planck, surface albedo, water vapor-lapse rate (WVLR) and cloud feedbacks, determine how much surface temperatures will eventually warm to balance anthropogenic radiative forcing. Climate feedbacks remain difficult to constrain directly from temporal variation in observed surface warming and radiation budgets due to the pattern effect and low signal-to-noise ratio, with only order 1°C historic rise in surface temperatures and high uncertainty in aerosol radiative forcing. This study presents a new method to analyze climate feedbacks from observations by empirically fitting simplified reduced-physics relations for outgoing radiation at the top of the atmosphere (TOA) to observed spatial variation in climate properties and radiation budgets. Spatial variations in TOA outgoing radiation are dominated by the dependence on surface temperature: around 91% of the spatial variation in clear sky albedo, and 77% of spatial variation in clear sky TOA outgoing longwave radiation, is functionally explained by variation in surface temperatures. These simplified and observationally constrained relations are then differentiated with respect to spatial contrasts in surface temperature to reveal the Planck, fixed-cloud albedo ( λ albedo ${\lambda }_{\text{albedo}}$ ) and WVLR ( λ WVLR ${\lambda }_{\text{WVLR}}$ ) climate feedbacks spatially for both clear sky and all sky conditions. The resulting global all sky climate feedback values are λ WVLR ${\lambda }_{\text{WVLR}}$  = 1.28 (1.13–1.45 at 66%) Wm−2K−1, and λ albedo ${\lambda }_{\text{albedo}}$  = 0.64 (0.53–0.74) Wm−2 for the period 2003–2023, reducing to 0.35 (0.29–0.41) Wm−2K−1 under 4°C warming after cryosphere retreat. Our findings agree well with complex Earth system model evaluations based on temporal climate perturbations, and our approach is complementary.

Abstract Image

近代气候学空间梯度的气候反馈
气候反馈,包括普朗克、地表反照率、水汽蒸发率(WVLR)和云反馈,决定了地表温度最终会变暖多少以平衡人为辐射强迫。由于模式效应和低信噪比,地表温度的历史上升仅为1℃,气溶胶辐射强迫的不确定性很高,因此很难直接从观测到的地表增温和辐射预算的时间变化中约束气候反馈。本文提出了一种分析观测气候反馈的新方法,将大气顶出辐射(TOA)的简化简化物理关系与观测到的气候特征和辐射收支的空间变化进行经验拟合。TOA向外辐射的空间变化主要依赖于地表温度,晴空反照率的空间变化约占91%,晴空TOA向外长波辐射的空间变化约占77%,在功能上可由地表温度变化解释。然后根据表面温度的空间差异对这些简化的和观测约束的关系进行微分,以揭示普朗克,固定云反照率(λ albedo ${\lambda}_{\text{albedo}}$)和WVLR (λ WVLR ${\lambda}_{\text{WVLR}}$)在晴空和高空条件下的空间气候反馈所有天空情况。得到的全球晴空气候反馈值为λ WVLR ${\lambda}_{\text{WVLR}}$ = 1.28 (1.13-1.45 at 66%) Wm−2K−1,λ albedo ${\lambda}_{\text{albedo}}$ = 0.64 (0.53-0.74) Wm−2,升温4°C后冰冻圈退缩,λ albedo $ = 0.35 (0.29-0.41) Wm−2K−1。我们的发现与基于时间气候扰动的复杂地球系统模型评估非常一致,我们的方法是互补的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信