Modularity of d $d$ -elliptic loci with level structure

IF 1 2区 数学 Q1 MATHEMATICS
François Greer, Carl Lian
{"title":"Modularity of \n \n d\n $d$\n -elliptic loci with level structure","authors":"François Greer,&nbsp;Carl Lian","doi":"10.1112/jlms.70212","DOIUrl":null,"url":null,"abstract":"<p>We consider the generating series of special cycles on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <msub>\n <mi>A</mi>\n <mi>g</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {A}_1(N)\\times \\mathcal {A}_g(N)$</annotation>\n </semantics></math>, with full level <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> structure, valued in the cohomology of degree <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>g</mi>\n </mrow>\n <annotation>$2g$</annotation>\n </semantics></math>. The modularity theorem of Kudla–Millson for locally symmetric spaces implies that these series are modular. When <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$N=1$</annotation>\n </semantics></math>, the images of these loci in <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\mathcal {A}_g$</annotation>\n </semantics></math> are the <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-elliptic Noether–Lefschetz loci, which are conjectured to be modular. In the Appendix, it is shown that the resulting modular forms are nonzero for <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$g=2$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>⩾</mo>\n <mn>11</mn>\n </mrow>\n <annotation>$N\\geqslant 11$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>≠</mo>\n <mn>12</mn>\n </mrow>\n <annotation>$N\\ne 12$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70212","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the generating series of special cycles on A 1 ( N ) × A g ( N ) $\mathcal {A}_1(N)\times \mathcal {A}_g(N)$ , with full level N $N$ structure, valued in the cohomology of degree 2 g $2g$ . The modularity theorem of Kudla–Millson for locally symmetric spaces implies that these series are modular. When N = 1 $N=1$ , the images of these loci in A g $\mathcal {A}_g$ are the d $d$ -elliptic Noether–Lefschetz loci, which are conjectured to be modular. In the Appendix, it is shown that the resulting modular forms are nonzero for g = 2 $g=2$ when N 11 $N\geqslant 11$ and N 12 $N\ne 12$ .

考虑a1 (N) × a1 (N)上的特殊环的生成级数$\mathcal {A}_1(N)\times \mathcal {A}_g(N)$,具有全N阶$N$结构,值为2g次上同调$2g$。局部对称空间的Kudla-Millson模定理表明这些级数是模的。当N = 1 $N=1$时,这些基因座在A g $\mathcal {A}_g$中的图像为d $d$ -椭圆Noether-Lefschetz基因座,推测其为模。在附录中,结果表明,当N大于或等于11 $N\geqslant 11$且N≠12 $N\ne 12$时,所得到的模形式对于g = 2 $g=2$是非零的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信