A simple construction of the sine-Gordon model via stochastic quantization

IF 1.2 2区 数学 Q1 MATHEMATICS
Massimiliano Gubinelli, Martin Hairer, Tadahiro Oh, Younes Zine
{"title":"A simple construction of the sine-Gordon model via stochastic quantization","authors":"Massimiliano Gubinelli,&nbsp;Martin Hairer,&nbsp;Tadahiro Oh,&nbsp;Younes Zine","doi":"10.1112/jlms.70214","DOIUrl":null,"url":null,"abstract":"<p>We present a simple PDE construction of the sine-Gordon measure below the first threshold (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>β</mi>\n <mn>2</mn>\n </msup>\n <mo>&lt;</mo>\n <mn>4</mn>\n <mi>π</mi>\n </mrow>\n <annotation>$\\beta ^2 &lt; 4\\pi$</annotation>\n </semantics></math>), in both the finite and infinite volume settings, by studying the corresponding parabolic sine-Gordon model. We also establish pathwise global well-posedness of the hyperbolic sine-Gordon model in finite volume for <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>β</mi>\n <mn>2</mn>\n </msup>\n <mo>&lt;</mo>\n <mn>2</mn>\n <mi>π</mi>\n </mrow>\n <annotation>$\\beta ^2 &lt; 2\\pi$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70214","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70214","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a simple PDE construction of the sine-Gordon measure below the first threshold ( β 2 < 4 π $\beta ^2 < 4\pi$ ), in both the finite and infinite volume settings, by studying the corresponding parabolic sine-Gordon model. We also establish pathwise global well-posedness of the hyperbolic sine-Gordon model in finite volume for β 2 < 2 π $\beta ^2 < 2\pi$ .

Abstract Image

Abstract Image

Abstract Image

通过随机量化的简单构造正弦戈登模型
我们给出了低于第一阈值(β 2 &lt;4 π $\beta ^2 < 4\pi$),在有限和无限体积设置下,通过研究相应的抛物线正弦-戈登模型。我们还建立了有限体积下β 2 &lt的双曲正弦-戈登模型的路径全局适定性;2 π $\beta ^2 < 2\pi$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信