Continuity of HYM connections with respect to metric variations

IF 1.2 2区 数学 Q1 MATHEMATICS
Rémi Delloque
{"title":"Continuity of HYM connections with respect to metric variations","authors":"Rémi Delloque","doi":"10.1112/jlms.70219","DOIUrl":null,"url":null,"abstract":"<p>We investigate the set of (real Dolbeault classes of) balanced metrics <span></span><math>\n <semantics>\n <mi>Θ</mi>\n <annotation>$\\Theta$</annotation>\n </semantics></math> on a balanced manifold <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with respect to which a torsion-free coherent sheaf <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is slope stable. We prove that the set of all such <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mi>Θ</mi>\n <mo>]</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$[\\Theta] \\in H^{n - 1,n - 1}(X,\\mathbb {R})$</annotation>\n </semantics></math> is an open convex cone locally defined by a finite number of linear inequalities. When <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math> is a Hermitian vector bundle, the Kobayashi–Hitchin correspondence provides associated Hermitian Yang–Mills connections, which we show depend continuously on the metric, even around classes with respect to which <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math> is only semi-stable. In this case, the holomorphic structure induced by the connection is the holomorphic structure of the associated graded object. The method relies on semi-stable perturbation techniques for geometric PDEs with a moment map interpretation and is quite versatile, and we hope that it can be used in other similar problems.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70219","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70219","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the set of (real Dolbeault classes of) balanced metrics Θ $\Theta$ on a balanced manifold X $X$ with respect to which a torsion-free coherent sheaf E $\mathcal {E}$ on X $X$ is slope stable. We prove that the set of all such [ Θ ] H n 1 , n 1 ( X , R ) $[\Theta] \in H^{n - 1,n - 1}(X,\mathbb {R})$ is an open convex cone locally defined by a finite number of linear inequalities. When E $\mathcal {E}$ is a Hermitian vector bundle, the Kobayashi–Hitchin correspondence provides associated Hermitian Yang–Mills connections, which we show depend continuously on the metric, even around classes with respect to which E $\mathcal {E}$ is only semi-stable. In this case, the holomorphic structure induced by the connection is the holomorphic structure of the associated graded object. The method relies on semi-stable perturbation techniques for geometric PDEs with a moment map interpretation and is quite versatile, and we hope that it can be used in other similar problems.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

HYM连接对度规变化的连续性
我们研究了平衡流形X$ X$上的平衡度量Θ $\Theta$的(实Dolbeault类)集合,其中X$ X$上的无扭相干束E $\mathcal {E}$是斜率稳定的。我们证明了所有这样的集合[Θ]∈H n−1,n−1 (X, R)$ [\Theta] \in H^{n - 1,n - 1}(X,\mathbb {R})$是由有限个线性不等式局部定义的开凸锥。当E $\mathcal {E}$是厄米向量束时,Kobayashi-Hitchin对应提供了相关的厄米杨-米尔斯连接,我们证明了它连续依赖于度规,甚至在E $\mathcal {E}$仅为半稳定的类周围。在这种情况下,由连接引起的全纯结构就是相关渐变物体的全纯结构。该方法利用半稳定摄动技术求解具有矩映射解释的几何偏微分方程,具有较强的通用性,希望能应用于其他类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信