{"title":"Applying interpretable machine learning to assess intraspecific trait divergence under landscape-scale population differentiation","authors":"Sambadi Majumder, Chase M. Mason","doi":"10.1002/aps3.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Here we demonstrate the application of interpretable machine learning methods to investigate intraspecific functional trait divergence using diverse genotypes of the wide-ranging sunflower <i>Helianthus annuus</i> occupying populations across two contrasting ecoregions—the Great Plains versus the North American Deserts.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Recursive feature elimination was applied to functional trait data from the HeliantHOME database, followed by the application of the Boruta algorithm to detect the traits that are most predictive of ecoregion. Random forest and gradient boosting machine classifiers were then trained and validated, with results visualized using accumulated local effects plots.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The most ecoregion-predictive functional traits span categories of leaf economics, plant architecture, reproductive phenology, and floral and seed morphology. Relative to the Great Plains, genotypes from the North American Deserts exhibit shorter stature, fewer leaves, higher leaf nitrogen content, and longer average length of phyllaries.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>This approach readily identifies traits predictive of ecoregion origin, and thus the functional traits most likely to be responsible for contrasting ecological strategies across the landscape. This type of approach can be used to parse large plant trait datasets in a wide range of contexts, including explicitly testing the applicability of interspecific paradigms at intraspecific scales.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"13 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.70015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Premise
Here we demonstrate the application of interpretable machine learning methods to investigate intraspecific functional trait divergence using diverse genotypes of the wide-ranging sunflower Helianthus annuus occupying populations across two contrasting ecoregions—the Great Plains versus the North American Deserts.
Methods
Recursive feature elimination was applied to functional trait data from the HeliantHOME database, followed by the application of the Boruta algorithm to detect the traits that are most predictive of ecoregion. Random forest and gradient boosting machine classifiers were then trained and validated, with results visualized using accumulated local effects plots.
Results
The most ecoregion-predictive functional traits span categories of leaf economics, plant architecture, reproductive phenology, and floral and seed morphology. Relative to the Great Plains, genotypes from the North American Deserts exhibit shorter stature, fewer leaves, higher leaf nitrogen content, and longer average length of phyllaries.
Discussion
This approach readily identifies traits predictive of ecoregion origin, and thus the functional traits most likely to be responsible for contrasting ecological strategies across the landscape. This type of approach can be used to parse large plant trait datasets in a wide range of contexts, including explicitly testing the applicability of interspecific paradigms at intraspecific scales.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.