AI Captain: Conversational mission planning and execution system for autonomous surface vehicles

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Kim Alexander Christensen , Alexey Gusev , Andreas Gudahl Tufte , Ole Andreas Alsos , Martin Steinert
{"title":"AI Captain: Conversational mission planning and execution system for autonomous surface vehicles","authors":"Kim Alexander Christensen ,&nbsp;Alexey Gusev ,&nbsp;Andreas Gudahl Tufte ,&nbsp;Ole Andreas Alsos ,&nbsp;Martin Steinert","doi":"10.1016/j.oceaneng.2025.121988","DOIUrl":null,"url":null,"abstract":"<div><div>Interactive, high-level mission planning for autonomous ships remains an underexplored topic. We present AI Captain, a large language model-based (LLM) proof-of-concept mission planning and execution system that can replan according to commands from a human operator in the loop. The system hierarchically combines a high-level LLM planner with a low-level control for commonsense reasoning and action, while interacting with the operator through a conversational user interface. We validate the feasibility of the system on a real vehicle in the field, demonstrating the ability to plan, re-plan, and handle scenarios that were not explicitly programmed beforehand. The results highlight how LLMs can facilitate both high-level contextual decision-making and human-AI teaming in maritime operations.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"338 ","pages":"Article 121988"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825016944","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Interactive, high-level mission planning for autonomous ships remains an underexplored topic. We present AI Captain, a large language model-based (LLM) proof-of-concept mission planning and execution system that can replan according to commands from a human operator in the loop. The system hierarchically combines a high-level LLM planner with a low-level control for commonsense reasoning and action, while interacting with the operator through a conversational user interface. We validate the feasibility of the system on a real vehicle in the field, demonstrating the ability to plan, re-plan, and handle scenarios that were not explicitly programmed beforehand. The results highlight how LLMs can facilitate both high-level contextual decision-making and human-AI teaming in maritime operations.
AI队长:自动水面车辆会话任务规划和执行系统
自主船舶的交互式、高级别任务规划仍然是一个未被充分探索的话题。我们提出了AI Captain,这是一个基于大型语言模型(LLM)的概念验证任务规划和执行系统,可以根据循环中人类操作员的命令重新规划。该系统将高级LLM规划器与低级控制相结合,用于常识性推理和操作,同时通过对话用户界面与操作员进行交互。我们在现场的真实车辆上验证了该系统的可行性,展示了计划、重新计划和处理事先没有明确编程的场景的能力。研究结果强调了llm如何促进海上行动中的高层情境决策和人类-人工智能团队。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信