Automated Real-Time Percutaneous Coronary Intervention Risk Model Leveraging Electronic Health Records

Mandeep Singh MD, MPH , Adelaide M. Arruda-Olson MD, PhD , Bradley R. Lewis MS , Bradley K. Johnson BS , Rajeev Chaudhry MD, MPH , Arman Arghami MD, MPH , Mohamad Alkhouli MD, MBA , Charanjit S. Rihal MD, MBA
{"title":"Automated Real-Time Percutaneous Coronary Intervention Risk Model Leveraging Electronic Health Records","authors":"Mandeep Singh MD, MPH ,&nbsp;Adelaide M. Arruda-Olson MD, PhD ,&nbsp;Bradley R. Lewis MS ,&nbsp;Bradley K. Johnson BS ,&nbsp;Rajeev Chaudhry MD, MPH ,&nbsp;Arman Arghami MD, MPH ,&nbsp;Mohamad Alkhouli MD, MBA ,&nbsp;Charanjit S. Rihal MD, MBA","doi":"10.1016/j.jacadv.2025.101865","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Automated individualized risk prediction tools linked to electronic health records (EHRs) are not available for patients undergoing percutaneous coronary interventions (PCIs).</div></div><div><h3>Objectives</h3><div>Our goal was to automatically extract data elements used in the Mayo Clinic PCI models from EHR to enable point of care risk assessment.</div></div><div><h3>Methods</h3><div>Using the Mayo Clinic PCI registry, variables in the Mayo Clinic PCI risk score were trained and tested in an EHR to identify in-hospital death, stroke, bleeding, acute kidney injury (AKI) in patients who underwent PCI from 2016 to 2024. Least absolute shrinkage and selection operator regression was utilized to train (data building) and test (assessing performance) prediction models and to estimate effect sizes that were weighted and integrated into a scoring system.</div></div><div><h3>Results</h3><div>Death, stroke, bleeding, AKI occurred in 157 (1.8%), 43 (0.5%), 157 (1.8%), and 682 (7.6%), respectively. The C-statistics (95% CI) from the training and testing data sets were 0.83 (95% CI: 0.80-0.86) and 0.84 (95% CI: 0.78-0.89); 0.76 (95% CI: 0.65-0.84) and 0.77 (95% CI: 0.65-0.86); 0.80 (95% CI: 0.75-0.83) and 0.75 (95% CI: 0.68-0.81); and 0.82 (95% CI: 0.80-0.84) and 0.80 (95% CI: 0.77-0.84) for in-hospital death, stroke, bleeding, and AKI, respectively. Bootstrap analysis indicated that the models were not overfit to the available data set. The probabilities estimated from the models matched the observed data well, as indicated by the calibration curve slope and intercept and across subgroups, including women, acute coronary syndrome, cardiogenic shock, and diabetes mellitus.</div></div><div><h3>Conclusions</h3><div>Real-time, automated, point of care PCI risk assessment is feasible in an EHR environment.</div></div>","PeriodicalId":73527,"journal":{"name":"JACC advances","volume":"4 7","pages":"Article 101865"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772963X25002856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Automated individualized risk prediction tools linked to electronic health records (EHRs) are not available for patients undergoing percutaneous coronary interventions (PCIs).

Objectives

Our goal was to automatically extract data elements used in the Mayo Clinic PCI models from EHR to enable point of care risk assessment.

Methods

Using the Mayo Clinic PCI registry, variables in the Mayo Clinic PCI risk score were trained and tested in an EHR to identify in-hospital death, stroke, bleeding, acute kidney injury (AKI) in patients who underwent PCI from 2016 to 2024. Least absolute shrinkage and selection operator regression was utilized to train (data building) and test (assessing performance) prediction models and to estimate effect sizes that were weighted and integrated into a scoring system.

Results

Death, stroke, bleeding, AKI occurred in 157 (1.8%), 43 (0.5%), 157 (1.8%), and 682 (7.6%), respectively. The C-statistics (95% CI) from the training and testing data sets were 0.83 (95% CI: 0.80-0.86) and 0.84 (95% CI: 0.78-0.89); 0.76 (95% CI: 0.65-0.84) and 0.77 (95% CI: 0.65-0.86); 0.80 (95% CI: 0.75-0.83) and 0.75 (95% CI: 0.68-0.81); and 0.82 (95% CI: 0.80-0.84) and 0.80 (95% CI: 0.77-0.84) for in-hospital death, stroke, bleeding, and AKI, respectively. Bootstrap analysis indicated that the models were not overfit to the available data set. The probabilities estimated from the models matched the observed data well, as indicated by the calibration curve slope and intercept and across subgroups, including women, acute coronary syndrome, cardiogenic shock, and diabetes mellitus.

Conclusions

Real-time, automated, point of care PCI risk assessment is feasible in an EHR environment.
利用电子健康记录的自动实时经皮冠状动脉介入治疗风险模型
背景:与电子健康记录(EHRs)相关的自动化个性化风险预测工具不适用于接受经皮冠状动脉介入治疗(pci)的患者。我们的目标是从EHR中自动提取梅奥诊所PCI模型中使用的数据元素,以实现护理点风险评估。方法使用梅奥诊所PCI注册表,对梅奥诊所PCI风险评分中的变量进行培训,并在EHR中进行测试,以识别2016年至2024年接受PCI治疗的患者的院内死亡、中风、出血、急性肾损伤(AKI)。最小绝对收缩和选择算子回归用于训练(数据构建)和测试(评估性能)预测模型,并估计加权并集成到评分系统中的效应大小。结果死亡157例(1.8%),卒中43例(0.5%),出血157例(1.8%),AKI 682例(7.6%)。训练和测试数据集的c统计量(95% CI)分别为0.83 (95% CI: 0.80-0.86)和0.84 (95% CI: 0.78-0.89);0.76(95%置信区间:0.65—-0.84)和0.77(95%置信区间:0.65—-0.86);0.80(95%置信区间:0.75—-0.83)和0.75(95%置信区间:0.68—-0.81);院内死亡、卒中、出血和AKI分别为0.82 (95% CI: 0.80-0.84)和0.80 (95% CI: 0.77-0.84)。自举分析表明,模型与现有数据集没有过拟合。从校准曲线的斜率和截距可以看出,模型估计的概率与观察到的数据吻合得很好,并且跨亚组,包括女性、急性冠状动脉综合征、心源性休克和糖尿病。结论实时、自动化的PCI风险评估在电子病历环境下是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JACC advances
JACC advances Cardiology and Cardiovascular Medicine
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信