{"title":"eSMARTGreen (ESG): A scalable IoT-Based architecture for multi-greenhouse management","authors":"Fatima Abou-Mehdi-Hassani , Atef Zaguia , Darine Ameyed , Hassan Ait Bouh , Abdelhak Mkhida","doi":"10.1016/j.suscom.2025.101152","DOIUrl":null,"url":null,"abstract":"<div><div>Concerns about agricultural productivity and sustainability have driven the need for smart greenhouse architectures. However, significant challenges remain in ensuring seamless data exchange, interoperability, and efficient management across multiple greenhouses. This paper introduces the eSMARTGreen (ESG) model, a novel IoT-based smart greenhouse architecture designed for scalable multi-greenhouse management. ESG features fault-tolerant, modular, and flexible deployment strategy, integrating a robust decision-making system and an interoperable framework aligned with ISO/IEC 30141 standards. The ESG model was validated through a simulation conducted using CPN Tools across a network of five greenhouses. Performance metrics showed low average latencies (19–25 ms) and reception rates of up to 72 %, confirming ESG’s responsiveness and communication efficiency under diverse operational conditions. By facilitating seamless coordination and automation, ESG contributes to greater efficiency and sustainability in smart farming. Future applications of ESG could include predictive maintenance, adaptive climate control, large-scale deployment in agricultural clusters, and integration with renewable energy systems to further enhance sustainability and operational efficiency.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101152"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000733","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Concerns about agricultural productivity and sustainability have driven the need for smart greenhouse architectures. However, significant challenges remain in ensuring seamless data exchange, interoperability, and efficient management across multiple greenhouses. This paper introduces the eSMARTGreen (ESG) model, a novel IoT-based smart greenhouse architecture designed for scalable multi-greenhouse management. ESG features fault-tolerant, modular, and flexible deployment strategy, integrating a robust decision-making system and an interoperable framework aligned with ISO/IEC 30141 standards. The ESG model was validated through a simulation conducted using CPN Tools across a network of five greenhouses. Performance metrics showed low average latencies (19–25 ms) and reception rates of up to 72 %, confirming ESG’s responsiveness and communication efficiency under diverse operational conditions. By facilitating seamless coordination and automation, ESG contributes to greater efficiency and sustainability in smart farming. Future applications of ESG could include predictive maintenance, adaptive climate control, large-scale deployment in agricultural clusters, and integration with renewable energy systems to further enhance sustainability and operational efficiency.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.