{"title":"Dynamic concept reduction methods based on local information","authors":"Mei-Zheng Li , Lei-Jun Li , Ju-Sheng Mi , Qian Hu","doi":"10.1016/j.ijar.2025.109514","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge reduction is one of the core research issues in formal concept analysis. As a new technique of knowledge reduction, concept reduction has received increasing attention recently. One typical method of calculating concept reducts is based on representative concept matrix (RC-matrix, for short), which can obtain all concept reducts. However, it is confronted with the following challenges: (1) before the construction of the RC-matrix, all concepts of the formal context need to be calculated, which is both time and space consuming; (2) there is a lot of redundant information in the constructed RC-matrix, which is not helpful to calculate the concept reducts; (3) when the data changes dynamically, the concept reducts need to be calculated for scratch. To address these issues, dynamic concept reduction methods based on local information are proposed in this paper. Firstly, the characteristics of the minimal elements (with respect to set inclusion) in the RC-matrix are analyzed, and all the minimal elements are directly labeled from the formal context; secondly, the advantage of local information is taken to construct each minimal elements of the RC-matrix, from which all the concept reducts can be obtained; besides, a new simplified version of RC-matrix, named as Type-I minimal RC-matrix, is further constructed to compute one concept reduct; and finally, when data dynamically changes, the connections between concept reducts of the original formal context and those of the new one are analyzed, consequently, two dynamic concept reduction algorithms are proposed.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"186 ","pages":"Article 109514"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001550","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge reduction is one of the core research issues in formal concept analysis. As a new technique of knowledge reduction, concept reduction has received increasing attention recently. One typical method of calculating concept reducts is based on representative concept matrix (RC-matrix, for short), which can obtain all concept reducts. However, it is confronted with the following challenges: (1) before the construction of the RC-matrix, all concepts of the formal context need to be calculated, which is both time and space consuming; (2) there is a lot of redundant information in the constructed RC-matrix, which is not helpful to calculate the concept reducts; (3) when the data changes dynamically, the concept reducts need to be calculated for scratch. To address these issues, dynamic concept reduction methods based on local information are proposed in this paper. Firstly, the characteristics of the minimal elements (with respect to set inclusion) in the RC-matrix are analyzed, and all the minimal elements are directly labeled from the formal context; secondly, the advantage of local information is taken to construct each minimal elements of the RC-matrix, from which all the concept reducts can be obtained; besides, a new simplified version of RC-matrix, named as Type-I minimal RC-matrix, is further constructed to compute one concept reduct; and finally, when data dynamically changes, the connections between concept reducts of the original formal context and those of the new one are analyzed, consequently, two dynamic concept reduction algorithms are proposed.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.