Synchrotron X-ray diffraction and digital volume correlation of carbon fibre-reinforced polymers for enhanced characterisation of deformation behaviour
Jiraphant Srisuriyachot , Thanasis Chatziathanasiou , Sophie A.M. McNair , Paloma Rodriguez Santana , Jean Bénézech , Yentl Swolfs , Igor P. Dolbnya , Richard Butler , Alexander J.G. Lunt
{"title":"Synchrotron X-ray diffraction and digital volume correlation of carbon fibre-reinforced polymers for enhanced characterisation of deformation behaviour","authors":"Jiraphant Srisuriyachot , Thanasis Chatziathanasiou , Sophie A.M. McNair , Paloma Rodriguez Santana , Jean Bénézech , Yentl Swolfs , Igor P. Dolbnya , Richard Butler , Alexander J.G. Lunt","doi":"10.1016/j.compositesb.2025.112703","DOIUrl":null,"url":null,"abstract":"<div><div>This paper demonstrates a new approach that exploits both lattice strain mapping via Wide Angle X-ray Scattering (WAXS) and Digital Volume Correlation (DVC) of Computed Tomography (CT) to understand the material response at different length scales in Carbon Fibre Reinforced Polymers (CFRPs) under <em>in-situ</em> loading, a phenomenon of substantial importance for the modelling, design, and certification of composite structures. WAXS gives insight into fibre lattice strain, while DVC provides sub-laminate response in the CFRP. A detailed numerical simulation was also developed to compare with these novel experimental methods. This approach is the first demonstration that the strain within the crystalline regions of the fibre is distinct from the sub-laminate behaviour, with up to 80<!--> <!-->% and 36<!--> <!-->% differences in the longitudinal and transverse directions, respectively, as a result of the complex microstructure of the fibres. An improved understanding of composite behaviour is fundamental to understanding how strain accommodation leads to structural failure, providing routes to refine part rejection criteria and reduce the environmental impact of this increasingly widespread material class.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"305 ","pages":"Article 112703"},"PeriodicalIF":12.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825006043","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates a new approach that exploits both lattice strain mapping via Wide Angle X-ray Scattering (WAXS) and Digital Volume Correlation (DVC) of Computed Tomography (CT) to understand the material response at different length scales in Carbon Fibre Reinforced Polymers (CFRPs) under in-situ loading, a phenomenon of substantial importance for the modelling, design, and certification of composite structures. WAXS gives insight into fibre lattice strain, while DVC provides sub-laminate response in the CFRP. A detailed numerical simulation was also developed to compare with these novel experimental methods. This approach is the first demonstration that the strain within the crystalline regions of the fibre is distinct from the sub-laminate behaviour, with up to 80 % and 36 % differences in the longitudinal and transverse directions, respectively, as a result of the complex microstructure of the fibres. An improved understanding of composite behaviour is fundamental to understanding how strain accommodation leads to structural failure, providing routes to refine part rejection criteria and reduce the environmental impact of this increasingly widespread material class.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.