Tao Jiang , Feng Hou , Yi Wang , Guangzhu Chen , Ruili Wang
{"title":"Knowledge-sharing hierarchical memory fusion network for scribble-supervised video salient object detection","authors":"Tao Jiang , Feng Hou , Yi Wang , Guangzhu Chen , Ruili Wang","doi":"10.1016/j.patrec.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Scribble annotations offer a practical alternative to pixel-wise labels in video salient object detection (V-SOD). However, their sparse foreground coverage and ambiguous boundaries introduce background interference and error propagation, degrading segmentation accuracy across frames. To address this issue, we propose a novel Knowledge-sharing Hierarchical Memory Fusion Network (KHMF-Net) for scribble-supervised V-SOD. The core of our framework is a Hierarchical Memory Bank (HMB) that stores initial scribbles, historical high-confidence regions, and historical full salient maps, enabling long-term spatiotemporal context modeling to suppress error propagation. Additionally, we introduce an Adaptive Memory Fusion (AMF) module to dynamically integrate multi-confidence features, providing reliable guidance during salient mask expansion. To address background interference, we design an Interactive Equalized Matching (IEM) module with reference-wise softmax, ensuring balanced contributions from reference frame pixels. A dual-attention knowledge-sharing mechanism is further proposed to enhance IEM by transferring high-performance attention features from a Teacher to a Student module, improving segmentation accuracy. Experimental results demonstrate that KHMF-Net’s hierarchical memory architecture and effective background-target discrimination enable state-of-the-art performance on three scribble-annotated datasets, even exceeding some fully supervised approaches. The module and predicted maps are publicly available at <span><span>https://github.com/TOMMYWHY/KHMF-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 177-183"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002314","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Scribble annotations offer a practical alternative to pixel-wise labels in video salient object detection (V-SOD). However, their sparse foreground coverage and ambiguous boundaries introduce background interference and error propagation, degrading segmentation accuracy across frames. To address this issue, we propose a novel Knowledge-sharing Hierarchical Memory Fusion Network (KHMF-Net) for scribble-supervised V-SOD. The core of our framework is a Hierarchical Memory Bank (HMB) that stores initial scribbles, historical high-confidence regions, and historical full salient maps, enabling long-term spatiotemporal context modeling to suppress error propagation. Additionally, we introduce an Adaptive Memory Fusion (AMF) module to dynamically integrate multi-confidence features, providing reliable guidance during salient mask expansion. To address background interference, we design an Interactive Equalized Matching (IEM) module with reference-wise softmax, ensuring balanced contributions from reference frame pixels. A dual-attention knowledge-sharing mechanism is further proposed to enhance IEM by transferring high-performance attention features from a Teacher to a Student module, improving segmentation accuracy. Experimental results demonstrate that KHMF-Net’s hierarchical memory architecture and effective background-target discrimination enable state-of-the-art performance on three scribble-annotated datasets, even exceeding some fully supervised approaches. The module and predicted maps are publicly available at https://github.com/TOMMYWHY/KHMF-Net.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.