Wei-Hua Zheng , Run-Ze Ni , Xiang-Hong Ran , Dan Mu
{"title":"Papain-like protease of SARS-CoV-2 inhibits dsRNA-induced type I interferon response partly by cleaving TBK1","authors":"Wei-Hua Zheng , Run-Ze Ni , Xiang-Hong Ran , Dan Mu","doi":"10.1016/j.bbrc.2025.152244","DOIUrl":null,"url":null,"abstract":"<div><div>Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has claimed millions of lives and has been a global threat since its emergence. Multiple SARS-CoV-2-encoded proteins have been shown to exert interferon-I (IFN–I)-antagonizing effects, which contribute to severe pathogenesis. We previously reported that the papain-like protease (PLpro) of SARS-CoV-2 and SARS-CoV, a closely related highly pathogenic coronavirus, counteracts IFN production via its deubiquitinating (DUB) activity. In this study, we reveal a new mechanism by which SARS-CoV-2 negatively regulates host innate antiviral responses. Both PLpro proteins from SARS-CoV and SARS-CoV-2 mediated the proteolytic cleavage of TBK1, the hub kinase in the IFN-I signaling pathway. Using point mutants, we demonstrated that the catalytic triad, which is composed of C111, H272, and D286, and the enzyme activity regulatory site, W93, are essential for the ability of SARS-CoV-2 PLpro to cleave the TBK1 protein and for the inhibitory effect on TBK1-triggered IFN expression. However, the mutants failed to abrogate the suppressive effect of SARS-CoV PLpro on Sendai virus (SeV)-induced IFN-I promoter activation, indicating that PLpro inhibits the dsRNA-induced IFN response partly by cleaving TBK1. Collectively, our findings suggest a conserved mechanism through which highly pathogenic SARS-CoV and SARS-CoV-2 harness their PLpro proteins to suppress IFN expression at the level of TBK1, resulting in the evasion of the host innate antiviral response.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"777 ","pages":"Article 152244"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25009593","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has claimed millions of lives and has been a global threat since its emergence. Multiple SARS-CoV-2-encoded proteins have been shown to exert interferon-I (IFN–I)-antagonizing effects, which contribute to severe pathogenesis. We previously reported that the papain-like protease (PLpro) of SARS-CoV-2 and SARS-CoV, a closely related highly pathogenic coronavirus, counteracts IFN production via its deubiquitinating (DUB) activity. In this study, we reveal a new mechanism by which SARS-CoV-2 negatively regulates host innate antiviral responses. Both PLpro proteins from SARS-CoV and SARS-CoV-2 mediated the proteolytic cleavage of TBK1, the hub kinase in the IFN-I signaling pathway. Using point mutants, we demonstrated that the catalytic triad, which is composed of C111, H272, and D286, and the enzyme activity regulatory site, W93, are essential for the ability of SARS-CoV-2 PLpro to cleave the TBK1 protein and for the inhibitory effect on TBK1-triggered IFN expression. However, the mutants failed to abrogate the suppressive effect of SARS-CoV PLpro on Sendai virus (SeV)-induced IFN-I promoter activation, indicating that PLpro inhibits the dsRNA-induced IFN response partly by cleaving TBK1. Collectively, our findings suggest a conserved mechanism through which highly pathogenic SARS-CoV and SARS-CoV-2 harness their PLpro proteins to suppress IFN expression at the level of TBK1, resulting in the evasion of the host innate antiviral response.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics