{"title":"On the algebraic lower bound for the radius of spatial analyticity for the Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations","authors":"Mikaela Baldasso, Mahendra Panthee","doi":"10.1016/j.jmaa.2025.129802","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial value problem (IVP) for the 2D generalized Zakharov-Kuznetsov (ZK) equation<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>Δ</mi><mo>=</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, <span><math><mi>μ</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>, <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> and the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is real analytic in a complex strip in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and have radius of spatial analyticity <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. For both <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, considering a symmetrized version, we prove that there exists <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that the radius of spatial analyticity of the solution remains the same in the time interval <span><math><mo>[</mo><mo>−</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span>. We also consider the evolution of the radius of spatial analyticity when the local solution extends globally in time. For the Zakharov-Kuznetsov equation (<span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>), we prove that, in both focusing (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span>) and defocusing (<span><math><mi>μ</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>) cases, and for any <span><math><mi>T</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the radius of analyticity cannot decay faster than <span><math><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mo>(</mo><mn>4</mn><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></msup></math></span>, <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span>. For the modified Zakharov-Kuznetsov equation (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>)</mo></math></span> in the defocusing case (<span><math><mi>μ</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>), we prove that the radius of spatial analyticity cannot decay faster than <span><math><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span>, for any <span><math><mi>T</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. These results on the algebraic lower bounds for the evolution of the radius of analyticity improve the ones obtained by Shan and Zhang in <span><span>[41]</span></span> and by Quian and Shan in <span><span>[33]</span></span> where the authors have obtained lower bounds involving exponential decay.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129802"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005839","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the initial value problem (IVP) for the 2D generalized Zakharov-Kuznetsov (ZK) equation where , , and the initial data is real analytic in a complex strip in and have radius of spatial analyticity . For both and , considering a symmetrized version, we prove that there exists such that the radius of spatial analyticity of the solution remains the same in the time interval . We also consider the evolution of the radius of spatial analyticity when the local solution extends globally in time. For the Zakharov-Kuznetsov equation (), we prove that, in both focusing () and defocusing () cases, and for any , the radius of analyticity cannot decay faster than , , . For the modified Zakharov-Kuznetsov equation ( in the defocusing case (), we prove that the radius of spatial analyticity cannot decay faster than , , for any . These results on the algebraic lower bounds for the evolution of the radius of analyticity improve the ones obtained by Shan and Zhang in [41] and by Quian and Shan in [33] where the authors have obtained lower bounds involving exponential decay.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.