Tao Zhang , Mohsen Sotoudeh , Xiaohu Yao , Axel Groß , Marc Kamlah
{"title":"3D chemo-mechanical modeling of microstructure evolution and anisotropic deformation in NaxV2(PO4)3 cathode particles for sodium-ion batteries","authors":"Tao Zhang , Mohsen Sotoudeh , Xiaohu Yao , Axel Groß , Marc Kamlah","doi":"10.1016/j.ijsolstr.2025.113525","DOIUrl":null,"url":null,"abstract":"<div><div>The cathode material Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> of sodium-ion batteries displays complicate phase segregation thermodynamics with anisotropic deformation during (de)intercalation. A virtual multiscale modeling chain is established to develop a 3D anisotropic chemo-mechanical phase-field model based on first-principles calculations for Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. This model accounts for diffusion, phase changes, anisotropic misfit strain, and anisotropic elasticity. The multiwell potential of Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is constructed, which captures phase segregation into a sodium-poor phase NaV<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and a sodium-rich phase Na<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. The elastic properties of NaV<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> are determined by first-principles for the first time. Furthermore, we address how elastic effects and crystal orientation influence the full 3D microstructure evolution, including phase evolution, interface morphology, and stress evolution in Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> particles. We find that the quasi-equilibrium single wave propagation along [010] is determined by the anisotropic elasticity tensor. The anisotropic elasticity tensor leads to the striking behavior of warping of the interface. Furthermore, the phase boundary motion is thermodynamically affected by the crystal orientation, which is controlled by minimization of the interface area. It is found that the [010] crystal orientation is mechanically more reliable and recommended for Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> electrode design. Apart from yielding information about the properties of Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(PO<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>)<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, the findings of this work may offer an opportunity to achieve improved mechanical stability of the phase separating electrode materials by engineering the crystal orientation.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"320 ","pages":"Article 113525"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325003117","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The cathode material NaV(PO) of sodium-ion batteries displays complicate phase segregation thermodynamics with anisotropic deformation during (de)intercalation. A virtual multiscale modeling chain is established to develop a 3D anisotropic chemo-mechanical phase-field model based on first-principles calculations for NaV(PO). This model accounts for diffusion, phase changes, anisotropic misfit strain, and anisotropic elasticity. The multiwell potential of NaV(PO) is constructed, which captures phase segregation into a sodium-poor phase NaV(PO) and a sodium-rich phase NaV(PO). The elastic properties of NaV(PO) are determined by first-principles for the first time. Furthermore, we address how elastic effects and crystal orientation influence the full 3D microstructure evolution, including phase evolution, interface morphology, and stress evolution in NaV(PO) particles. We find that the quasi-equilibrium single wave propagation along [010] is determined by the anisotropic elasticity tensor. The anisotropic elasticity tensor leads to the striking behavior of warping of the interface. Furthermore, the phase boundary motion is thermodynamically affected by the crystal orientation, which is controlled by minimization of the interface area. It is found that the [010] crystal orientation is mechanically more reliable and recommended for NaV(PO) electrode design. Apart from yielding information about the properties of NaV(PO), the findings of this work may offer an opportunity to achieve improved mechanical stability of the phase separating electrode materials by engineering the crystal orientation.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.