Kaixian Ba , Ning Liu , Jinbo She , Yuan Wang , Guoliang Ma , Bin Yu , Xiangdong Kong
{"title":"Matrix-sensitivity-based active disturbance rejection control for hydraulic servo positioning systems with friction compensation","authors":"Kaixian Ba , Ning Liu , Jinbo She , Yuan Wang , Guoliang Ma , Bin Yu , Xiangdong Kong","doi":"10.1016/j.mechatronics.2025.103378","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate position regulation in hydraulic servo systems (HDU) plays a critical role in ensuring system stability, operational efficiency, and achieving high-accuracy performance. However, friction-induced nonlinearities, including Stribeck effects and internal friction dynamics, significantly impact tracking accuracy. This paper introduces a matrix-sensitivity-based active disturbance rejection control (MSADRC) method that compensates for friction without requiring an explicit friction model. By leveraging matrix sensitivity, MSADRC effectively decouples system dynamics and enhances control accuracy, particularly in suppressing frictional effects. A third-order extended state observer (ESO) first estimates total system disturbances, while a model predictive mechanism converts nonlinear time-varying disturbances into a feedforward compensation term. The resulting matrix sensitivity-based compensation optimally adjusts system response, ensuring improved performance. Experimental results show that MSADRC effectively mitigates nonlinear disturbances, reducing peak error by up to 55 % compared to conventional ADRC methods. This approach provides a reliable and efficient strategy to address adaptive friction compensation issues in hydraulic control systems.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103378"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741582500087X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate position regulation in hydraulic servo systems (HDU) plays a critical role in ensuring system stability, operational efficiency, and achieving high-accuracy performance. However, friction-induced nonlinearities, including Stribeck effects and internal friction dynamics, significantly impact tracking accuracy. This paper introduces a matrix-sensitivity-based active disturbance rejection control (MSADRC) method that compensates for friction without requiring an explicit friction model. By leveraging matrix sensitivity, MSADRC effectively decouples system dynamics and enhances control accuracy, particularly in suppressing frictional effects. A third-order extended state observer (ESO) first estimates total system disturbances, while a model predictive mechanism converts nonlinear time-varying disturbances into a feedforward compensation term. The resulting matrix sensitivity-based compensation optimally adjusts system response, ensuring improved performance. Experimental results show that MSADRC effectively mitigates nonlinear disturbances, reducing peak error by up to 55 % compared to conventional ADRC methods. This approach provides a reliable and efficient strategy to address adaptive friction compensation issues in hydraulic control systems.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.