Kato-Ponce inequality for fractional nonlocal parabolic operators

IF 2.4 2区 数学 Q1 MATHEMATICS
Meng Qu , Xinfeng Wu
{"title":"Kato-Ponce inequality for fractional nonlocal parabolic operators","authors":"Meng Qu ,&nbsp;Xinfeng Wu","doi":"10.1016/j.jde.2025.113572","DOIUrl":null,"url":null,"abstract":"<div><div>We establish Kato-Ponce inequality (or fractional Leibniz rule) for fractional nonlocal parabolic operators <span><math><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> of arbitrary order <span><math><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span> for a full range of Lebesgue indices including the endpoints, and determine the sharp range of <em>s</em>. We also prove a sharp Kato-Ponce commutator inequality for <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>. To achieve these results, we not only adapt the methods of Bourgain-Li <span><span>[11]</span></span>, Grafakos-Oh <span><span>[25]</span></span> and Oh-Wu <span><span>[50]</span></span> to the present parabolic setting, but build up sharp decay estimates for higher-order hyper-singular integrals of Nogin-Rubin <span><span>[48]</span></span> and Stinga-Torrea <span><span>[54]</span></span>, which are crucial for us to derive the sharp ranges of <em>s</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113572"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005996","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish Kato-Ponce inequality (or fractional Leibniz rule) for fractional nonlocal parabolic operators (tx)s/2 and (1+tx)s/2 of arbitrary order s>0 for a full range of Lebesgue indices including the endpoints, and determine the sharp range of s. We also prove a sharp Kato-Ponce commutator inequality for (1+tx)s/2. To achieve these results, we not only adapt the methods of Bourgain-Li [11], Grafakos-Oh [25] and Oh-Wu [50] to the present parabolic setting, but build up sharp decay estimates for higher-order hyper-singular integrals of Nogin-Rubin [48] and Stinga-Torrea [54], which are crucial for us to derive the sharp ranges of s.
分数阶非局部抛物算子的Kato-Ponce不等式
我们建立了分数阶非局部抛物算子(∂t−△x)s/2和(1+∂t−△x)s/2的任意阶s>;0的分数阶非局部抛物算子(∂t−△x)s/2的加托-庞塞不等式(或分数阶莱布尼茨规则),并确定了s的尖锐范围。我们还证明了(1+∂t−△x)s/2的尖锐加托-庞塞变换不等式。为了得到这些结果,我们不仅将Bourgain-Li[11]、Grafakos-Oh[25]和Oh-Wu[50]的方法适用于目前的抛物型环境,而且建立了Nogin-Rubin[48]和Stinga-Torrea[54]的高阶超奇异积分的锐衰减估计,这对我们推导s的锐范围至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信