Positive harmonically bounded solutions for semi-linear equations

IF 2.4 2区 数学 Q1 MATHEMATICS
Wolfhard Hansen , Krzysztof Bogdan
{"title":"Positive harmonically bounded solutions for semi-linear equations","authors":"Wolfhard Hansen ,&nbsp;Krzysztof Bogdan","doi":"10.1016/j.jde.2025.113544","DOIUrl":null,"url":null,"abstract":"<div><div>For open sets <em>U</em> in some space <em>X</em>, we are interested in positive solutions to semi-linear equations <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mi>μ</mi></math></span> on <em>U</em>. Here <em>L</em> may be an elliptic or parabolic operator of second order (generator of a diffusion process) or an integro-differential operator (generator of a jump process), <em>μ</em> is a positive measure on <em>U</em> and <em>φ</em> is an arbitrary measurable real function on <span><math><mi>U</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> such that the functions <span><math><mi>t</mi><mo>↦</mo><mi>φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>U</mi></math></span>, are continuous, increasing and vanish at <span><math><mi>t</mi><mo>=</mo><mn>0</mn></math></span>.</div><div>More precisely, given a measurable function <span><math><mi>h</mi><mo>≥</mo><mn>0</mn></math></span> on <em>X</em> which is <em>L</em>-harmonic on <em>U</em>, that is, continuous real on <em>U</em> with <span><math><mi>L</mi><mi>h</mi><mo>=</mo><mn>0</mn></math></span> on <em>U</em>, we give necessary and sufficient conditions for the existence of positive solutions <em>u</em> such that <span><math><mi>u</mi><mo>=</mo><mi>h</mi></math></span> on <span><math><mi>X</mi><mo>∖</mo><mi>U</mi></math></span> and <em>u</em> has the same “boundary behavior” as <em>h</em> on <em>U</em> (Problem 1) or, alternatively, <span><math><mi>u</mi><mo>≤</mo><mi>h</mi></math></span> on <em>U</em>, but <span><math><mi>u</mi><mo>≢</mo><mn>0</mn></math></span> on <em>U</em> (Problem 2).</div><div>We show that these problems are equivalent to problems of the existence of positive solutions to certain integral equations <span><math><mi>u</mi><mo>+</mo><mi>K</mi><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi></math></span> on <em>U</em>, <em>K</em> being a potential kernel. We solve them in the general setting of balayage spaces <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span> which, in probabilistic terms, corresponds to the setting of transient Hunt processes with strong Feller resolvent.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113544"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005716","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For open sets U in some space X, we are interested in positive solutions to semi-linear equations Lu=φ(,u)μ on U. Here L may be an elliptic or parabolic operator of second order (generator of a diffusion process) or an integro-differential operator (generator of a jump process), μ is a positive measure on U and φ is an arbitrary measurable real function on U×R+ such that the functions tφ(x,t), xU, are continuous, increasing and vanish at t=0.
More precisely, given a measurable function h0 on X which is L-harmonic on U, that is, continuous real on U with Lh=0 on U, we give necessary and sufficient conditions for the existence of positive solutions u such that u=h on XU and u has the same “boundary behavior” as h on U (Problem 1) or, alternatively, uh on U, but u0 on U (Problem 2).
We show that these problems are equivalent to problems of the existence of positive solutions to certain integral equations u+Kφ(,u)=g on U, K being a potential kernel. We solve them in the general setting of balayage spaces (X,W) which, in probabilistic terms, corresponds to the setting of transient Hunt processes with strong Feller resolvent.
半线性方程的正调和有界解
对于某个空间X上的开集U,我们感兴趣的是半线性方程Lu=φ(⋅,U)μ在U上的正解。这里L可以是二阶椭圆算子或抛物算子(扩散过程的产生器)或积分微分算子(跳跃过程的产生器),μ是U上的正测度,φ是U×R+上的任意可测实函数,使得函数t∈φ(X, t), X∈U连续递增并在t=0处消失。更准确地说,给定一个可测函数h≥0在X上是l调和的,即在U上连续实数且U上Lh=0,我们给出了正解U存在的充分必要条件,使得U在X × U上=h且U与h在U上具有相同的“边界行为”(问题1),或者U在U上≤h,但U在U上为0(问题2)。我们证明了这些问题等价于某些积分方程u+Kφ(⋅,u)=g在u上正解的存在性问题,K是一个势核。我们在balayage空间(X,W)的一般设置中求解它们,在概率上,它对应于具有强Feller解析的瞬态Hunt过程的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信