Well-posedness and strong convergence analysis of stochastic space-time fractional wave problems driven by fractional Brownian sheet

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yi Yang , Jin Huang , Hu Li
{"title":"Well-posedness and strong convergence analysis of stochastic space-time fractional wave problems driven by fractional Brownian sheet","authors":"Yi Yang ,&nbsp;Jin Huang ,&nbsp;Hu Li","doi":"10.1016/j.camwa.2025.06.013","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is interesting in studying well-posedness and strong convergence analysis for stochastic space-time fractional wave equations driven by fractional Brownian sheet. We first discuss well-posedness of the original stochastic space-time fractional wave equation in terms of standard Picard's iteration argument and give regularity and Hölder continuity analysis of its mild solution. Afterwards, we introduce a Wong-Zakai approximation to fractional Brownian sheet using spectral basis so that a regularized stochastic space-time fractional wave equation is derived, and then the corresponding regularity, Hölder continuity, and error estimate of its regularized solution are also investigated. Further, we use spectral Galerkin method and backward Euler convolution quadrature scheme to discretize the regularized equation in space and time, respectively, and then we provide rigorously strong convergence analysis for the solution of discrete scheme. Finally, numerical examples are carried out to verify our theoretical convergence results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"194 ","pages":"Pages 177-201"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002597","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is interesting in studying well-posedness and strong convergence analysis for stochastic space-time fractional wave equations driven by fractional Brownian sheet. We first discuss well-posedness of the original stochastic space-time fractional wave equation in terms of standard Picard's iteration argument and give regularity and Hölder continuity analysis of its mild solution. Afterwards, we introduce a Wong-Zakai approximation to fractional Brownian sheet using spectral basis so that a regularized stochastic space-time fractional wave equation is derived, and then the corresponding regularity, Hölder continuity, and error estimate of its regularized solution are also investigated. Further, we use spectral Galerkin method and backward Euler convolution quadrature scheme to discretize the regularized equation in space and time, respectively, and then we provide rigorously strong convergence analysis for the solution of discrete scheme. Finally, numerical examples are carried out to verify our theoretical convergence results.
分数布朗页驱动的随机时空分数波问题的适定性和强收敛性分析
本文研究了由分数布朗片驱动的随机时空分数波方程的适定性和强收敛性分析。首先用标准皮卡德迭代论证讨论了原始随机时空分数阶波动方程的适定性,并给出了其温和解的正则性和Hölder连续性分析。在此基础上,利用谱基引入分数阶布朗谱的Wong-Zakai近似,导出了正则化随机时空分数阶波动方程,并对其正则化解的正则性、Hölder连续性和误差估计进行了研究。利用谱伽辽金法和后向欧拉卷积正交格式分别在空间和时间上对正则化方程进行离散化,并对离散格式的解进行了严格强收敛性分析。最后,通过数值算例验证了理论收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信