A localized Fourier collocation method for the numerical solution of nonlinear fractional Fisher–Kolmogorov equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Farzaneh Safari , Ji Lin , Yanjun Duan
{"title":"A localized Fourier collocation method for the numerical solution of nonlinear fractional Fisher–Kolmogorov equation","authors":"Farzaneh Safari ,&nbsp;Ji Lin ,&nbsp;Yanjun Duan","doi":"10.1016/j.camwa.2025.06.020","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with a meshless method based on the localized Fourier collocation method (LFCM) combined with time discretization schemes to rigorously compute solutions for the Fisher-Kolmogorov equation. The idea is to generate the solution as the expansion of the modified Fourier series on the local subdomain and to use the reconstruction parameter to impact the accuracy and the rate of convergence. As applications, solutions of the factional Fisher-Kolmogorov equation on linear and nonlinear irregular domain are rigorously computed. Moreover, additional fourth-order terms in this model the so-called factional extended Fisher-Kolmogorov equation can be treated as a linear problem using the quasilinearization technique. Finally, we present an error analysis based on the illustration of convergence and accuracy graphs.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"193 ","pages":"Pages 241-252"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002652","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a meshless method based on the localized Fourier collocation method (LFCM) combined with time discretization schemes to rigorously compute solutions for the Fisher-Kolmogorov equation. The idea is to generate the solution as the expansion of the modified Fourier series on the local subdomain and to use the reconstruction parameter to impact the accuracy and the rate of convergence. As applications, solutions of the factional Fisher-Kolmogorov equation on linear and nonlinear irregular domain are rigorously computed. Moreover, additional fourth-order terms in this model the so-called factional extended Fisher-Kolmogorov equation can be treated as a linear problem using the quasilinearization technique. Finally, we present an error analysis based on the illustration of convergence and accuracy graphs.
非线性分数阶Fisher-Kolmogorov方程数值解的局部傅里叶配点法
本文提出了一种基于局部傅里叶配点法(LFCM)的无网格方法,结合时间离散化方法来严格计算Fisher-Kolmogorov方程的解。其思想是在局部子域上将修正傅立叶级数展开生成解,并使用重建参数来影响精度和收敛速度。作为应用,严格计算了线性和非线性不规则域上分式Fisher-Kolmogorov方程的解。此外,该模型中附加的四阶项,即所谓的分式扩展Fisher-Kolmogorov方程,可以使用拟线性化技术作为线性问题来处理。最后,我们给出了基于收敛图和精度图的误差分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信