Optimal transport in non-convex geometries and its application in shrinkage porosity prediction

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Madyen Nouri , Mohammad-Javad Kazemzadeh-Parsi , Amine Ammar , Francisco Chinesta , Julien Artozoul , Aude Caillaud
{"title":"Optimal transport in non-convex geometries and its application in shrinkage porosity prediction","authors":"Madyen Nouri ,&nbsp;Mohammad-Javad Kazemzadeh-Parsi ,&nbsp;Amine Ammar ,&nbsp;Francisco Chinesta ,&nbsp;Julien Artozoul ,&nbsp;Aude Caillaud","doi":"10.1016/j.camwa.2025.06.012","DOIUrl":null,"url":null,"abstract":"<div><div>Rooted in the Monge and Kantorovich problems, optimal transport seeks to minimize transportation costs, as quantified by Wasserstein distances, facilitating the transformation of one distribution into another distribution. However, its application faces challenges in addressing non-convex geometries, especially in interpolating mid-way distributions along transportation paths. In such scenarios, particles may breach the original shape boundaries, creating infeasible solutions. The article addresses this by proposing three innovative solutions: geometry mapping, trajectory planning and graph planning. These solutions aim to overcome the inherent limitations of optimal transport in non-convex spaces by offering mathematical formulations and implementation strategies. Importantly, the article goes beyond theoretical considerations by applying these solutions to predict shrinkage porosity in aluminum casting. This application demonstrates the broader relevance and effectiveness of the proposed solutions.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"193 ","pages":"Pages 222-240"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002573","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Rooted in the Monge and Kantorovich problems, optimal transport seeks to minimize transportation costs, as quantified by Wasserstein distances, facilitating the transformation of one distribution into another distribution. However, its application faces challenges in addressing non-convex geometries, especially in interpolating mid-way distributions along transportation paths. In such scenarios, particles may breach the original shape boundaries, creating infeasible solutions. The article addresses this by proposing three innovative solutions: geometry mapping, trajectory planning and graph planning. These solutions aim to overcome the inherent limitations of optimal transport in non-convex spaces by offering mathematical formulations and implementation strategies. Importantly, the article goes beyond theoretical considerations by applying these solutions to predict shrinkage porosity in aluminum casting. This application demonstrates the broader relevance and effectiveness of the proposed solutions.
非凸几何的最优输运及其在收缩孔隙率预测中的应用
基于Monge和Kantorovich问题,最优运输寻求最小化运输成本,用Wasserstein距离量化,促进从一种分布到另一种分布的转变。然而,它的应用在处理非凸几何时面临挑战,特别是在沿运输路径插值中间分布时。在这种情况下,粒子可能会突破原来的形状边界,产生不可行的解决方案。本文通过提出三种创新的解决方案来解决这个问题:几何映射、轨迹规划和图形规划。这些解决方案旨在通过提供数学公式和实施策略来克服非凸空间中最优运输的固有局限性。重要的是,本文超越了理论考虑,应用这些解决方案来预测铝铸件的缩孔率。该应用程序展示了所建议的解决方案的广泛相关性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信