{"title":"Estimating the properties of bone phantom cylinders through the inversion of axially transmitted low-frequency ultrasonic guided waves","authors":"Aubin Chaboty , Vu-Hieu Nguyen , Guillaume Haiat , Pierre Bélanger","doi":"10.1016/j.ultras.2025.107694","DOIUrl":null,"url":null,"abstract":"<div><div>Early detection of osteoporosis has increasingly focused on ultrasonic methods, particularly guided waves in axial transmission to assess cortical bone properties. This study demonstrates the potential of low-frequency measurements (<span><math><mo><</mo></math></span>500 kHz) for accurately inferring cortical mechanical and geometrical properties. A custom ultrasonic transducer centered at 350 kHz was used to acquire data, processed via a 2D fast Fourier transform to obtain dispersion curves. These were compared with simulations generated using the semi-analytical iso-geometric analysis (SAIGA) method, modeling a quasi-cylindrical bone geometry in void or immersed in olive oil. By incorporating an excitability parameter into the inversion algorithm, the proposed method achieved a less than 5% discrepancy between bone phantom properties determined via SAIGA inversion and bulk wave pulse-echo measurements, demonstrating its accuracy and potential for in vivo applications. Results also showed that high-wavenumber modes predominantly reflect material properties, whereas low-wavenumber modes below 100 kHz are sensitive to the overall bone geometry, highlighting the importance of low frequencies for a global bone characterization.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"155 ","pages":"Article 107694"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25001313","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Early detection of osteoporosis has increasingly focused on ultrasonic methods, particularly guided waves in axial transmission to assess cortical bone properties. This study demonstrates the potential of low-frequency measurements (500 kHz) for accurately inferring cortical mechanical and geometrical properties. A custom ultrasonic transducer centered at 350 kHz was used to acquire data, processed via a 2D fast Fourier transform to obtain dispersion curves. These were compared with simulations generated using the semi-analytical iso-geometric analysis (SAIGA) method, modeling a quasi-cylindrical bone geometry in void or immersed in olive oil. By incorporating an excitability parameter into the inversion algorithm, the proposed method achieved a less than 5% discrepancy between bone phantom properties determined via SAIGA inversion and bulk wave pulse-echo measurements, demonstrating its accuracy and potential for in vivo applications. Results also showed that high-wavenumber modes predominantly reflect material properties, whereas low-wavenumber modes below 100 kHz are sensitive to the overall bone geometry, highlighting the importance of low frequencies for a global bone characterization.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.