Multi-target nanocomposites for Alzheimer’s treatment via microenvironment modulation and β-amyloid plaque clearance

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tongtong Hou, Dan Nie, Minling Ding, Chaoli Wang, Kun Mei, Xuanzhao Lu, Xin Wang, Selene Tang, Hong Wu, Ping Guan, Wenlei Zhu, Xiaoling Hu
{"title":"Multi-target nanocomposites for Alzheimer’s treatment via microenvironment modulation and β-amyloid plaque clearance","authors":"Tongtong Hou, Dan Nie, Minling Ding, Chaoli Wang, Kun Mei, Xuanzhao Lu, Xin Wang, Selene Tang, Hong Wu, Ping Guan, Wenlei Zhu, Xiaoling Hu","doi":"10.1016/j.jmst.2025.04.081","DOIUrl":null,"url":null,"abstract":"Simultaneously addressing Aβ<sub>42</sub> aggregation and oxidative stress within the Alzheimer's disease (AD) microenvironment has emerged as a promising therapeutic strategy for countering the complex pathogenesis of AD. In this study, we developed a multifunctional nanocomposite (GQDs@MPN) with reactive oxygen species scavenging properties. This nanocomposite consists of graphene quantum dots encapsulated within a metal-polyphenol network (GQDs@MPN) formed by physiological Co (II)-coordinated epigallocatechin gallate (EGCG). GQDs@MPN effectively modulates the AD microenvironment by inhibiting Aβ<sub>42</sub> amyloidosis, attenuating oxidative stress, and regulating microglial activity. In vivo experiments demonstrated that GQDs@MPN, capable of crossing the blood-brain barrier (BBB), significantly reduced Aβ<sub>42</sub> deposition in APP/PS1 mice. Additionally, GQDs@MPN could exert its anti-inflammatory function by scavenging intracellular ROS and regulating the transformation of microglia from M1 phenotype to M2 phenotype, thus alleviating neuroinflammation. The underlying molecular mechanism is the up-regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) to clear ROS and subsequently inhibit the nuclear factor κB (NF-κB) signaling pathway. GQDs@MPN also effectively alleviated cognitive impairment and exhibited favorable biocompatibility in APP/PS1 mice. These findings suggest that GQDs@MPN is a promising candidate for multi-targeted AD therapy. We propose that such multifunctional nanocomposites could offer new avenues for developing novel AD inhibitors.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"27 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.081","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneously addressing Aβ42 aggregation and oxidative stress within the Alzheimer's disease (AD) microenvironment has emerged as a promising therapeutic strategy for countering the complex pathogenesis of AD. In this study, we developed a multifunctional nanocomposite (GQDs@MPN) with reactive oxygen species scavenging properties. This nanocomposite consists of graphene quantum dots encapsulated within a metal-polyphenol network (GQDs@MPN) formed by physiological Co (II)-coordinated epigallocatechin gallate (EGCG). GQDs@MPN effectively modulates the AD microenvironment by inhibiting Aβ42 amyloidosis, attenuating oxidative stress, and regulating microglial activity. In vivo experiments demonstrated that GQDs@MPN, capable of crossing the blood-brain barrier (BBB), significantly reduced Aβ42 deposition in APP/PS1 mice. Additionally, GQDs@MPN could exert its anti-inflammatory function by scavenging intracellular ROS and regulating the transformation of microglia from M1 phenotype to M2 phenotype, thus alleviating neuroinflammation. The underlying molecular mechanism is the up-regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) to clear ROS and subsequently inhibit the nuclear factor κB (NF-κB) signaling pathway. GQDs@MPN also effectively alleviated cognitive impairment and exhibited favorable biocompatibility in APP/PS1 mice. These findings suggest that GQDs@MPN is a promising candidate for multi-targeted AD therapy. We propose that such multifunctional nanocomposites could offer new avenues for developing novel AD inhibitors.

Abstract Image

通过微环境调节和β-淀粉样斑块清除治疗阿尔茨海默病的多靶点纳米复合材料
同时处理阿尔茨海默病(AD)微环境中的a β42聚集和氧化应激已成为对抗AD复杂发病机制的一种有前景的治疗策略。在这项研究中,我们开发了一种具有活性氧清除性能的多功能纳米复合材料(GQDs@MPN)。这种纳米复合材料由包裹在金属多酚网络(GQDs@MPN)内的石墨烯量子点组成,该网络由生理Co (II)协调的表没食子儿茶素没食子酸酯(EGCG)形成。GQDs@MPN通过抑制a - β42淀粉样变性、减轻氧化应激、调节小胶质细胞活性,有效调节AD微环境。体内实验表明,GQDs@MPN能够穿过血脑屏障(BBB),显著减少了APP/PS1小鼠Aβ42的沉积。此外,GQDs@MPN可通过清除细胞内ROS,调节小胶质细胞由M1表型向M2表型转化,从而发挥抗炎作用,减轻神经炎症。其潜在的分子机制是通过上调核因子-红细胞2相关因子2 (Nrf2)清除ROS,进而抑制核因子κB (NF-κB)信号通路。GQDs@MPN也能有效缓解APP/PS1小鼠的认知障碍,并表现出良好的生物相容性。这些发现表明GQDs@MPN是一种很有希望的多靶点AD治疗候选药物。我们认为这种多功能纳米复合材料可以为开发新型AD抑制剂提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信