{"title":"Rashba effect modulation in two-dimensional A2B2Te6 (A = Sb, Bi; B = Si, Ge) materials via charge transfer","authors":"Haipeng Wu, Qikun Tian, Jinghui Wei, Ziyu Xing, Guangzhao Qin, Zhenzhen Qin","doi":"10.1039/d4nr04601c","DOIUrl":null,"url":null,"abstract":"Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically design all possible types (typical, inverse, and composite) of Janus structures and successfully achieve numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A2B2Te6 (A = Sb, Bi; B = Si, Ge)materials. Considering the different Rashba constant αR and its modulation trend under external electric field, we comprehensively analyze the intrinsic electric field Ein in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of Ein and even the αR, we propose a straightforward strategy of introducing a single adatom onto the surface of 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examine the growth feasibility and electronic structures of the Janus Sb2Ge2Se3Te3 system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A2B2Te6-based Rashba systems, but also proposes a new strategy for efficiently and controllably modulating the αR through the reconfiguration of charge transfer.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"101 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04601c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically design all possible types (typical, inverse, and composite) of Janus structures and successfully achieve numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A2B2Te6 (A = Sb, Bi; B = Si, Ge)materials. Considering the different Rashba constant αR and its modulation trend under external electric field, we comprehensively analyze the intrinsic electric field Ein in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of Ein and even the αR, we propose a straightforward strategy of introducing a single adatom onto the surface of 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examine the growth feasibility and electronic structures of the Janus Sb2Ge2Se3Te3 system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A2B2Te6-based Rashba systems, but also proposes a new strategy for efficiently and controllably modulating the αR through the reconfiguration of charge transfer.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.