{"title":"Synergistic Regulation of De-solvation Effect and Planar Deposition via In-situ Interface Engineering for Ultra-Stable Dendrite-Free Zn-ion Batteries","authors":"Tao Yang, Tianyu Shen, Yuhang Liang, Miaojie Fang, Hongbo Wu, Ouwei Sheng, Hongli Chen, Chang Dong, Haojie Ji, Jian Zhang, Rongkun Zheng, Hao Liu, Guoxiu Wang, Xuefeng Zhang","doi":"10.1016/j.ensm.2025.104411","DOIUrl":null,"url":null,"abstract":"Advanced interfacial engineering is essential to address key challenges such as dendrite formation, parasitic reactions, and sluggish electrochemical kinetics, in aqueous zinc-ion batteries. In this study, by using a facile self-assembly method, we developed an armor-like interfacial layer (ZSL) on the Zn surface, serving as both an ion re-distributor and a protective barrier. This compact interfacial layer exhibits suitable hydrophilic and zincophilic features, enabling consistent and uniform Zn<sup>2+</sup> flux and reducing voltage polarization. The ZSL also enhances the de-solvation process, speeds up zinc deposition kinetics, and suppresses parasitic reactions induced by water decomposition. Furthermore, it decreases the surface energy, promoting planar deposition of Zn<sup>2+</sup>. As a result, the modified zinc anodes demonstrate exceptional cycling stability, maintaining a dendrite-free surface for more than 8000 h with minimal byproduct formation. The asymmetric cell utilizing ZSL@Zn anodes exhibits highly stable reversibility over 6000 cycles with an average Coulombic efficiency (CE) of 99.89%. In full cells paired with Na<sub>2</sub>V<sub>6</sub>O<sub>16</sub>·3H<sub>2</sub>O (NVO) cathodes, the Zn-ion batteries exhibit excellent rate performance and long-term cycling durability. This work highlights the significant role of in-situ interfacial layers in achieving highly stable and reversible zinc anodes for large-scale zinc-ion battery applications.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"1 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104411","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced interfacial engineering is essential to address key challenges such as dendrite formation, parasitic reactions, and sluggish electrochemical kinetics, in aqueous zinc-ion batteries. In this study, by using a facile self-assembly method, we developed an armor-like interfacial layer (ZSL) on the Zn surface, serving as both an ion re-distributor and a protective barrier. This compact interfacial layer exhibits suitable hydrophilic and zincophilic features, enabling consistent and uniform Zn2+ flux and reducing voltage polarization. The ZSL also enhances the de-solvation process, speeds up zinc deposition kinetics, and suppresses parasitic reactions induced by water decomposition. Furthermore, it decreases the surface energy, promoting planar deposition of Zn2+. As a result, the modified zinc anodes demonstrate exceptional cycling stability, maintaining a dendrite-free surface for more than 8000 h with minimal byproduct formation. The asymmetric cell utilizing ZSL@Zn anodes exhibits highly stable reversibility over 6000 cycles with an average Coulombic efficiency (CE) of 99.89%. In full cells paired with Na2V6O16·3H2O (NVO) cathodes, the Zn-ion batteries exhibit excellent rate performance and long-term cycling durability. This work highlights the significant role of in-situ interfacial layers in achieving highly stable and reversible zinc anodes for large-scale zinc-ion battery applications.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.