Pan Zeng, Xiaoqin Li, Bo Zhao, Jiechang Gao, Wei Feng, Qingyuan Wang, Yingze Song
{"title":"Electronic Structure Engineering in Electrocatalysts: Enabling Regulated Redox Mediation for Advanced Lithium‐Sulfur Chemistry","authors":"Pan Zeng, Xiaoqin Li, Bo Zhao, Jiechang Gao, Wei Feng, Qingyuan Wang, Yingze Song","doi":"10.1002/aenm.202501603","DOIUrl":null,"url":null,"abstract":"The practical deployment of lithium‐sulfur (Li–S) battery is fundamentally constrained by the intrinsic shuttle effect and the kinetically sluggish conversion of lithium polysulfides (LiPSs). To mitigate these challenges, rational design of advanced electrocatalysts capable of dual‐functional LiPSs immobilization and catalytic conversion has been recognized as a pivotal solution. Critically, the catalytic efficacy of electrocatalysts is intrinsically governed by their electronic structure characteristics, which dictate adsorption energies, charge transfer dynamics, and reaction pathway selectivity during the redox process. However, a systematic review correlating electronic modulation strategies with mechanistic enhancements in Li–S chemistry still remains absent. This review emphasizes recent advances in the fascinating strategies to tailor the electronic structure of electrocatalysts, including but not limited to <jats:italic>d</jats:italic>‐band position, <jats:italic>d</jats:italic>‐band valence electron/vacancy, spin state, e<jats:sub>g</jats:sub>/t<jats:sub>2g</jats:sub> orbitals, electron filling of anti‐bonding, <jats:italic>p</jats:italic>‐band, <jats:italic>d‐p</jats:italic> orbital hybridization, <jats:italic>f</jats:italic>‐orbital, and geometric structure engineering. The fundamental relationships between electronic structure and catalytic activity are discussed in detail, highlighting mechanistic insights into the origins of enhanced activity. Finally, the major challenges in modulating electronic structure are summarized, and an outlook for further development of electronic structure strategies is briefly proposed. This review can afford cutting‐edge insights into the electronic structure regulation in Li–S chemistry.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"4 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The practical deployment of lithium‐sulfur (Li–S) battery is fundamentally constrained by the intrinsic shuttle effect and the kinetically sluggish conversion of lithium polysulfides (LiPSs). To mitigate these challenges, rational design of advanced electrocatalysts capable of dual‐functional LiPSs immobilization and catalytic conversion has been recognized as a pivotal solution. Critically, the catalytic efficacy of electrocatalysts is intrinsically governed by their electronic structure characteristics, which dictate adsorption energies, charge transfer dynamics, and reaction pathway selectivity during the redox process. However, a systematic review correlating electronic modulation strategies with mechanistic enhancements in Li–S chemistry still remains absent. This review emphasizes recent advances in the fascinating strategies to tailor the electronic structure of electrocatalysts, including but not limited to d‐band position, d‐band valence electron/vacancy, spin state, eg/t2g orbitals, electron filling of anti‐bonding, p‐band, d‐p orbital hybridization, f‐orbital, and geometric structure engineering. The fundamental relationships between electronic structure and catalytic activity are discussed in detail, highlighting mechanistic insights into the origins of enhanced activity. Finally, the major challenges in modulating electronic structure are summarized, and an outlook for further development of electronic structure strategies is briefly proposed. This review can afford cutting‐edge insights into the electronic structure regulation in Li–S chemistry.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.