Conversational Large-Language-Model Artificial Intelligence Agent for Accelerated Synthesis of Metal–Organic Frameworks Catalysts in Olefin Hydrogenation

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-23 DOI:10.1021/acsnano.5c04880
Jing Lin, Danfeng Zhao, Shaopeng Lu, Rushuo Li, Xinmeng Xu, Zhaokun Wang, Wenqing Li, Yujing Ji, Chenjun Zhang, Lei Shi, Xu Jin*, Hongyi Gao* and Ge Wang*, 
{"title":"Conversational Large-Language-Model Artificial Intelligence Agent for Accelerated Synthesis of Metal–Organic Frameworks Catalysts in Olefin Hydrogenation","authors":"Jing Lin,&nbsp;Danfeng Zhao,&nbsp;Shaopeng Lu,&nbsp;Rushuo Li,&nbsp;Xinmeng Xu,&nbsp;Zhaokun Wang,&nbsp;Wenqing Li,&nbsp;Yujing Ji,&nbsp;Chenjun Zhang,&nbsp;Lei Shi,&nbsp;Xu Jin*,&nbsp;Hongyi Gao* and Ge Wang*,&nbsp;","doi":"10.1021/acsnano.5c04880","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic frameworks (MOFs) attract significant attention for their structural diversity and design flexibility, making them ideal candidates for catalytic applications. However, the traditional trial-and-error approach for optimizing MOF synthesis remains inefficient. In this study, we introduce the MOFsyn agent, an AI-driven framework that harnesses large language models (LLMs) for MOF synthesis optimization. This system integrates data automatic analysis, material mechanism analysis, and experimental protocol navigation by employing retrieval-augmented generation (RAG) to refine synthetic strategies based on natural language inputs. Using Ni@UiO-66(Ce) for olefin hydrogenation as a case study, the MOFsyn agent analyzed the relationship between synthesis conditions, structural characteristics, and catalytic performance, with a particular focus on the electronic structure of nickel. Through adaptive optimization, a novel stepwise reduction strategy was proposed that outperformed conventional one-pot reduction. The optimized Ni@UiO-66(Ce)-R2T1, synthesized under MOFsyn agent’s guidance, exhibited nearly twice the Ni<sup>0</sup>/Ni<sup>total</sup> ratio compared to the best-performing sample from an initial experimental set and achieved 100% conversion and selectivity for dicyclopentadiene hydrogenation under mild conditions (70 °C, 2 MPa). These results validate the accuracy and efficiency of the MOFsyn agent. This study provides an efficient tool for intelligent material synthesis, enabling researchers without programming expertise to accelerate material development.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 26","pages":"23840–23858"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c04880","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–organic frameworks (MOFs) attract significant attention for their structural diversity and design flexibility, making them ideal candidates for catalytic applications. However, the traditional trial-and-error approach for optimizing MOF synthesis remains inefficient. In this study, we introduce the MOFsyn agent, an AI-driven framework that harnesses large language models (LLMs) for MOF synthesis optimization. This system integrates data automatic analysis, material mechanism analysis, and experimental protocol navigation by employing retrieval-augmented generation (RAG) to refine synthetic strategies based on natural language inputs. Using Ni@UiO-66(Ce) for olefin hydrogenation as a case study, the MOFsyn agent analyzed the relationship between synthesis conditions, structural characteristics, and catalytic performance, with a particular focus on the electronic structure of nickel. Through adaptive optimization, a novel stepwise reduction strategy was proposed that outperformed conventional one-pot reduction. The optimized Ni@UiO-66(Ce)-R2T1, synthesized under MOFsyn agent’s guidance, exhibited nearly twice the Ni0/Nitotal ratio compared to the best-performing sample from an initial experimental set and achieved 100% conversion and selectivity for dicyclopentadiene hydrogenation under mild conditions (70 °C, 2 MPa). These results validate the accuracy and efficiency of the MOFsyn agent. This study provides an efficient tool for intelligent material synthesis, enabling researchers without programming expertise to accelerate material development.

Abstract Image

对话式大语言模型人工智能加速合成烯烃加氢金属-有机框架催化剂。
金属有机框架(mof)因其结构的多样性和设计的灵活性而备受关注,使其成为催化应用的理想候选者。然而,优化MOF合成的传统试错方法仍然效率低下。在本研究中,我们介绍了MOFsyn代理,这是一个人工智能驱动的框架,利用大型语言模型(LLMs)进行MOF合成优化。该系统采用基于自然语言输入的检索增强生成(retrieval-augmented generation, RAG)技术,将数据自动分析、材料机理分析和实验方案导航集成在一起。以Ni@UiO-66(Ce)催化烯烃加氢为例,分析了MOFsyn催化剂的合成条件、结构特征与催化性能之间的关系,重点研究了镍的电子结构。通过自适应优化,提出了一种新的逐步约简策略,优于传统的一锅约简。优化后的Ni@UiO-66(Ce)-R2T1在MOFsyn剂的引导下合成,其Ni0/ nittal比初始实验中表现最好的样品高出近两倍,在温和条件下(70°C, 2 MPa)二环戊二烯加氢转化率和选择性达到100%。这些结果验证了MOFsyn代理的准确性和效率。这项研究为智能材料合成提供了一个有效的工具,使没有编程专业知识的研究人员能够加速材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信