{"title":"Novel Small-Molecule miR-124 Inducer Acts as \"a Physiological Brake\" of Inflammation in Ulcerative Colitis by Targeting the PIK3R2/PI3K/Akt Axis.","authors":"Tiantian Wang,Yan Xu,Song Li,Ruobing Du,Jingmiao Shi,Chunhuan Jiang,Rong Wang,Yongqiang Zhu","doi":"10.1021/acs.jmedchem.5c01398","DOIUrl":null,"url":null,"abstract":"Ulcerative colitis (UC), a chronic inflammatory bowel disease with limited therapeutic options, necessitates novel treatments targeting its complex pathophysiology. This study identified FHND5032, a novel small-molecule miR-124 inducer, as a potent therapeutic candidate for UC. We found that FHND5032 significantly upregulated miR-124 expression in macrophages, surpassing the clinical-stage comparator ABX464 in vitro and in vivo. Mechanistically, miR-124-5p directly targeted PIK3R2, suppressing the PI3K/Akt pathway and decreasing proinflammatory cytokines while promoting M2 macrophage polarization. In dextran sodium sulfate-induced mouse colitis, FHND5032 markedly reduced the disease activity index, restored colon length, preserved mucosal architecture, and repaired intestinal barrier integrity. Additionally, FHND5032 reversed gut dysbiosis by reducing Proteobacteria and enriching beneficial Firmicutes, outperforming ABX464 in microbiome modulation. Safety assessments confirmed no organ toxicity or biochemical abnormalities. Collectively, FHND5032 exerted multifaceted anticolitis effects by targeting the PIK3R2/PI3K/Akt axis, restoring immune homeostasis, and modulating gut microbiota, positioning it as a promising therapeutic agent for UC.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"16 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c01398","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease with limited therapeutic options, necessitates novel treatments targeting its complex pathophysiology. This study identified FHND5032, a novel small-molecule miR-124 inducer, as a potent therapeutic candidate for UC. We found that FHND5032 significantly upregulated miR-124 expression in macrophages, surpassing the clinical-stage comparator ABX464 in vitro and in vivo. Mechanistically, miR-124-5p directly targeted PIK3R2, suppressing the PI3K/Akt pathway and decreasing proinflammatory cytokines while promoting M2 macrophage polarization. In dextran sodium sulfate-induced mouse colitis, FHND5032 markedly reduced the disease activity index, restored colon length, preserved mucosal architecture, and repaired intestinal barrier integrity. Additionally, FHND5032 reversed gut dysbiosis by reducing Proteobacteria and enriching beneficial Firmicutes, outperforming ABX464 in microbiome modulation. Safety assessments confirmed no organ toxicity or biochemical abnormalities. Collectively, FHND5032 exerted multifaceted anticolitis effects by targeting the PIK3R2/PI3K/Akt axis, restoring immune homeostasis, and modulating gut microbiota, positioning it as a promising therapeutic agent for UC.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.