Kuo Yang,Qianqian Dong,Zhibing Yao,Jingjing Liang,Jinjin Zhao,Lei Wu,Shenfei Zong,Yiping Cui,Zhuyuan Wang
{"title":"A Wearable Dual-Modal Patch for Rapid Pre-Hospital Diagnosis of Acute Myocardial Infarction.","authors":"Kuo Yang,Qianqian Dong,Zhibing Yao,Jingjing Liang,Jinjin Zhao,Lei Wu,Shenfei Zong,Yiping Cui,Zhuyuan Wang","doi":"10.1021/acsnano.5c05461","DOIUrl":null,"url":null,"abstract":"Timely diagnosis of acute myocardial infarction (AMI) during the prehospital phase is crucial to decrease mortality rates. Given that certain patients may not exhibit typical alterations in their electrocardiogram (ECG) patterns during the initial phases, the diagnosis of AMI is typically achieved by simultaneously assessing ECG results and myocardial injury biomarkers. This procedure requires the use of specialized equipment and trained personnel that are only available in hospitals, which may lead to possible delays of several hours. The development of a device that can detect both ECG and acute myocardial injury markers in the prehospital setting remains a significant challenge. In this study, a wearable dual-modal patch that combines a surface-enhanced Raman scattering (SERS) microneedle array with flexible electronics is introduced for the prehospital diagnosis of AMI. The patch allows for the noninvasive and rapid monitoring of both ECG and the levels of three myocardial injury markers in the interstitial fluid (ISF) by a portable Raman spectrometer, in accordance with the established clinical standard. This strategy was validated through experiments conducted on rats induced with AMI. The time required for diagnosing ischemia was significantly reduced to 50 min after its onset. The patch is optimally integrated into a stamp-sized band-aid, accompanied by a smartphone app for data visualization and real-time analysis. This initiative aims to facilitate the prompt delivery of interventions to reduce ischemic events.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"50 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05461","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Timely diagnosis of acute myocardial infarction (AMI) during the prehospital phase is crucial to decrease mortality rates. Given that certain patients may not exhibit typical alterations in their electrocardiogram (ECG) patterns during the initial phases, the diagnosis of AMI is typically achieved by simultaneously assessing ECG results and myocardial injury biomarkers. This procedure requires the use of specialized equipment and trained personnel that are only available in hospitals, which may lead to possible delays of several hours. The development of a device that can detect both ECG and acute myocardial injury markers in the prehospital setting remains a significant challenge. In this study, a wearable dual-modal patch that combines a surface-enhanced Raman scattering (SERS) microneedle array with flexible electronics is introduced for the prehospital diagnosis of AMI. The patch allows for the noninvasive and rapid monitoring of both ECG and the levels of three myocardial injury markers in the interstitial fluid (ISF) by a portable Raman spectrometer, in accordance with the established clinical standard. This strategy was validated through experiments conducted on rats induced with AMI. The time required for diagnosing ischemia was significantly reduced to 50 min after its onset. The patch is optimally integrated into a stamp-sized band-aid, accompanied by a smartphone app for data visualization and real-time analysis. This initiative aims to facilitate the prompt delivery of interventions to reduce ischemic events.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.