Coordinated Cation Transport in Ti3C2Tx MXene Membranes.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Austin J Booth,Qinsi Xiong,Woo Cheol Jeon,George C Schatz,Kelsey B Hatzell
{"title":"Coordinated Cation Transport in Ti3C2Tx MXene Membranes.","authors":"Austin J Booth,Qinsi Xiong,Woo Cheol Jeon,George C Schatz,Kelsey B Hatzell","doi":"10.1021/acsami.5c07383","DOIUrl":null,"url":null,"abstract":"Membrane nanofiltration is an attractive strategy for the selective recovery of high-demand metals from wastewater and brine. Effective sieving of ions in aqueous environments will require precise control over membranes' nanochannel size and chemistry. Ti3C2Tx MXene is an environmentally stable 2D material that can be processed into laminar membranes containing nanoscale interlayer spaces. The MXene interlayer environment depends on the ion species and amount of water intercalated between MXene sheets, and it is the major factor governing permeation and selectivity through MXene membranes. Coordinated ion-ion and ion-interlayer dynamics in the presence of complex mixtures can impact ion permeability and selectivity. Herein, we observe strong competitive effects between different cations (Li+, Na+, and Ca2+) in binary mixtures, resulting in reduced selectivity when compared with single-salt permeability ratios. X-ray diffraction, molecular dynamics, and density functional theory simulations support the conclusion that cations with stronger attraction to MXene flakes can preferentially occupy the MXene nanochannels and hinder other ions via charge or size exclusion. Elucidation of ion transport behavior in MXene under complex conditions will allow for more rational design of efficient ion-sieving membranes.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"12 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c07383","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane nanofiltration is an attractive strategy for the selective recovery of high-demand metals from wastewater and brine. Effective sieving of ions in aqueous environments will require precise control over membranes' nanochannel size and chemistry. Ti3C2Tx MXene is an environmentally stable 2D material that can be processed into laminar membranes containing nanoscale interlayer spaces. The MXene interlayer environment depends on the ion species and amount of water intercalated between MXene sheets, and it is the major factor governing permeation and selectivity through MXene membranes. Coordinated ion-ion and ion-interlayer dynamics in the presence of complex mixtures can impact ion permeability and selectivity. Herein, we observe strong competitive effects between different cations (Li+, Na+, and Ca2+) in binary mixtures, resulting in reduced selectivity when compared with single-salt permeability ratios. X-ray diffraction, molecular dynamics, and density functional theory simulations support the conclusion that cations with stronger attraction to MXene flakes can preferentially occupy the MXene nanochannels and hinder other ions via charge or size exclusion. Elucidation of ion transport behavior in MXene under complex conditions will allow for more rational design of efficient ion-sieving membranes.
Ti3C2Tx MXene膜中阳离子的协同转运
膜纳滤是从废水和卤水中选择性回收高需求金属的一种有吸引力的策略。在水环境中有效筛分离子需要精确控制膜的纳米通道大小和化学性质。Ti3C2Tx MXene是一种环境稳定的二维材料,可以加工成含有纳米级层间空间的层流膜。MXene层间环境取决于MXene片间的离子种类和水的数量,是控制MXene膜的渗透和选择性的主要因素。在复杂混合物中离子-离子和离子-层间的配位动力学会影响离子的渗透性和选择性。在此,我们观察到二元混合物中不同阳离子(Li+, Na+和Ca2+)之间存在强烈的竞争效应,导致与单盐渗透率比相比选择性降低。x射线衍射、分子动力学和密度泛函理论模拟支持这样的结论:对MXene薄片具有更强吸引力的阳离子可以优先占据MXene纳米通道,并通过电荷或尺寸排斥来阻碍其他离子。阐明MXene在复杂条件下的离子传输行为将有助于更合理地设计高效的离子筛选膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信