{"title":"Exploring Neural Dynamics in the Auditory Telencephalon of Crows using Functional Ultrasound Imaging.","authors":"Diana A Liao,Eva Schwarzbach,Andreas Nieder","doi":"10.1523/jneurosci.0016-25.2025","DOIUrl":null,"url":null,"abstract":"Crows, renowned for advanced cognitive abilities and vocal communication, rely on intricate auditory systems. While the neuroanatomy of corvid auditory pathways is partially explored, the underlying neurophysiological mechanisms are largely unknown. This study used functional ultrasound imaging (fUSi) to investigate sound-induced cerebral blood volume (CBV) changes in the field L complex of the auditory telencephalon in two female crows. FUSi revealed frequency-specific CBV responses, showing a tonotopic organization within the field L complex, with low frequencies in posterior dorsal region and high frequencies in the anterior ventral region. Machine learning analyses showed fUSi signals could be used to classify sound types accurately, in both awake and anesthetized states. Variable CBV responses to longer sound stimuli suggest a delineation of subregions within the field L complex. Together, these findings highlight the potential of fUSi for providing high-resolution insights into functional systems in corvids, enabling future exploration of experimental task-related cognitive dynamics.Significance Statement This study highlights the use of functional ultrasound imaging (fUSi) to explore auditory processing in crows, marking the first application of this technique in songbirds. By revealing the frequency map of the crow's auditory system and demonstrating the ability of fUSi to classify sound types, the research uncovers the neural dynamics supporting complex auditory functions. The findings suggest conserved auditory organization across avian species and provide insights into the evolution of audio-vocal behaviors in birds. This work paves the way for future studies on the neural underpinnings of cognition and communication in corvids, offering significant implications for comparative neuroscience and neuroethology.","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"26 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/jneurosci.0016-25.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Crows, renowned for advanced cognitive abilities and vocal communication, rely on intricate auditory systems. While the neuroanatomy of corvid auditory pathways is partially explored, the underlying neurophysiological mechanisms are largely unknown. This study used functional ultrasound imaging (fUSi) to investigate sound-induced cerebral blood volume (CBV) changes in the field L complex of the auditory telencephalon in two female crows. FUSi revealed frequency-specific CBV responses, showing a tonotopic organization within the field L complex, with low frequencies in posterior dorsal region and high frequencies in the anterior ventral region. Machine learning analyses showed fUSi signals could be used to classify sound types accurately, in both awake and anesthetized states. Variable CBV responses to longer sound stimuli suggest a delineation of subregions within the field L complex. Together, these findings highlight the potential of fUSi for providing high-resolution insights into functional systems in corvids, enabling future exploration of experimental task-related cognitive dynamics.Significance Statement This study highlights the use of functional ultrasound imaging (fUSi) to explore auditory processing in crows, marking the first application of this technique in songbirds. By revealing the frequency map of the crow's auditory system and demonstrating the ability of fUSi to classify sound types, the research uncovers the neural dynamics supporting complex auditory functions. The findings suggest conserved auditory organization across avian species and provide insights into the evolution of audio-vocal behaviors in birds. This work paves the way for future studies on the neural underpinnings of cognition and communication in corvids, offering significant implications for comparative neuroscience and neuroethology.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles