Yang Li,Changbin Zhao,Yingqian Cao,Xinhai Chen,Yuanyue Tang,Xiaohui Zhou,Hanne Ingmer,Xinan Jiao,Qiuchun Li
{"title":"Oxidative stress elicited by phage infection induces Staphylococcal type III-A CRISPR-Cas system.","authors":"Yang Li,Changbin Zhao,Yingqian Cao,Xinhai Chen,Yuanyue Tang,Xiaohui Zhou,Hanne Ingmer,Xinan Jiao,Qiuchun Li","doi":"10.1093/nar/gkaf541","DOIUrl":null,"url":null,"abstract":"In prokaryotes, the CRISPR-Cas system provides immunity to invading mobile genetic elements, but its expression is commonly repressed in the absence of phage infection to prevent autoimmunity. How bacteria senses phage infection and activates CRISPR-Cas system are poorly understood. Here, we demonstrate that an essential promoter Pcas, located within the cas1 gene, is the primary promoter driving expression of cas genes encoding the Cas10-Csm interference complex in Staphylococcus aureus type III-A CRISPR-Cas system during phage infection. As a conserved promoter in Staphylococci type III-A CRISPR-Cas system, the Pcas loses its ability to activate cas genes expression when mutated at the C186 site. Importantly, we find that the transcriptional regulator MgrA directly represses type III-A CRISPR-Cas system by interacting with Pcas to prevent autoimmunity. Upon phage infection, MgrA senses oxidative stress and dissociates from the Pcas, alleviating the transcriptional repression and subsequently triggering a robust immunity against phages. Our work provides evidence for the requirement of Pcas within cas1 during type III-A CRISPR-Cas interference stage, and reveals that MgrA-mediated regulation provides an effective mechanism for bacteria to balance avoiding autoimmunityand defending against phages.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"48 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In prokaryotes, the CRISPR-Cas system provides immunity to invading mobile genetic elements, but its expression is commonly repressed in the absence of phage infection to prevent autoimmunity. How bacteria senses phage infection and activates CRISPR-Cas system are poorly understood. Here, we demonstrate that an essential promoter Pcas, located within the cas1 gene, is the primary promoter driving expression of cas genes encoding the Cas10-Csm interference complex in Staphylococcus aureus type III-A CRISPR-Cas system during phage infection. As a conserved promoter in Staphylococci type III-A CRISPR-Cas system, the Pcas loses its ability to activate cas genes expression when mutated at the C186 site. Importantly, we find that the transcriptional regulator MgrA directly represses type III-A CRISPR-Cas system by interacting with Pcas to prevent autoimmunity. Upon phage infection, MgrA senses oxidative stress and dissociates from the Pcas, alleviating the transcriptional repression and subsequently triggering a robust immunity against phages. Our work provides evidence for the requirement of Pcas within cas1 during type III-A CRISPR-Cas interference stage, and reveals that MgrA-mediated regulation provides an effective mechanism for bacteria to balance avoiding autoimmunityand defending against phages.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.